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Introduction 
 

With a population of 250 million people, Indonesia has a fairly high 

incidence of colorectal cancer, estimated at 63,500 cases per year.1 

Conventional standard treatments for colorectal cancer are surgery, 

chemotherapy, and radiotherapy.1 Radiation therapy and chemotherapy 

act as the main treatments, though both have serious side effects such 

as liver toxicity, nausea, and vomiting.2 Medicinal plants are also used 

in complementary therapy to treat several types of cancer, including 

colorectal cancer, with relatively fewer and milder side 

effects.3Curcumin (Curcuma longa L.), derived from a medicinal plant, 

is a naturally occurring phenolic compound that has previously been 

studied as a drug for use in cancer treatment.4 Curcumin's phenolic 

yellowish pigment contains curcumonoids (curcumin, 

demethoxycurcumin, and bisdemethoxycurcumin) that have been              
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linked to anti-microbial, anti-carcinogenic, anti-inflammatory, 

hypocholesterolemic, and hepatoprotective properties.5 Its potential 

anti-cancer effects can induce apoptosis in cancer cells without 

triggering cytotoxicity in healthy cells, as well as overcome doxorubicin 

therapeutic resistance through antioxidation activity and p-glycoprotein 

inhibition.6 Curcumin also affects the expression of various genes, such 

as the metallothionein gene, the tubulin gene, and p53, which is 

involved in colon carcinogenesis.6  In addition, curcumin is known to 

decrease the cell viability and growth of HT-29 colorectal cancer cells. 

Curcumin can inhibit the activation of vascular endothelial growth 

factor,7 matrix metalloproteinase, and protein activator-18 by inhibiting 

epithelial-mesenchymal transition and tumor angiogenesis. Moreover, 

curcumin can inhibit the self-renewal and differentiation of cancer stem 

cells, the contact and adhesion of tumor cells with blood vessels, and 

the metastasis of distant tumor cells and the formation of tumor cell 

microstasis and microspheres.4 

Numerous studies have shown that curcumin-based cancer treatment is 

effective and has few to no side effects; however, its anti-cancer activity 

is hampered by limited absorption and poor solubility.9; The active 

ingredients in traditional medicines have an integral mechanism of 

action to several targets. Therefore, metabolic analysis can help identify 

the overall mechanism of traditional medicines and their early 

diagnostic biomarkers, as well as explore disease-related processes and 
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Chemotherapy for colorectal cancer often leads to significant adverse effects on patients, 

underscoring the need for alternative treatments. Herbal medicines like curcumin are considered 

a valuable complementary therapy due to their low toxicity profile and potential to mitigate the 

side effects of chemotherapy. Curcumin's mechanism of action targets multiple pathways, with 

untargeted metabolomic analysis helping to understand its exact mechanisms and subsequent 

treatment response. The aim of this study was to compare HT-29 cancer cell metabolites after 

curcumin and chemotherapy drug interventions to identify metabolites that can predict similar 

mechanisms of action between these treatments. Principal Component Analysis (PCA) of Fourier 

transform infrared spectroscopy (FTIR) absorption spectrum showed similar metabolite profiles 

in HT-29 cell culture media treated with curcumin and the chemotherapeutic cisplatin. Five cell 

metabolomes emerged after additional gas chromatography mass spectrometry/mass spectrometry 

(GC-MS/MS) and MS-DIAL data annotation: 1-bromo-2-chloroethane, 2-cyanoacetamide, 

dimethylamine (DMA), 2-nitrobenzo acid, and butane. The confusion matrix of these five 

annotated metabolites could be distinguished in HT-29 cell cultures treated with curcumin, but 

not in control cell cultures or those treated with the drugs cisplatin, doxorubicin, or 5-fluorouracil 

(5-FU). 2-cyanoacetamide in particular can be used as a marker of HT-29 cells' response to 

treatment with curcumin based on a p-value of < 0.05. According to these findings, no metabolite 

can predict the resemblance of curcumin's mechanism of action to chemotherapeutic medicines. 

Further study should therefore focus on in vivo experimental validation and upgrading 

metabolomic analysis technologies to further establish the similarities in the metabolite profiles 

of curcumin and cisplatin treatments. 
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monitor treatment responses.10 Previous research highlighted a 

combination of active chemicals found in extracts and herbal medicines 

that automatically interact with those found in other medications to 

either boost or decrease their therapeutic impact.11 

Four cancer drugs have been tested with two different mechanisms of 

action at inhibition concentrations (IC50) to fight against cancer cells.12 

Research has shown that infrared (IR) spectroscopy is a very accurate 

descriptor of how anti-cancer drugs work. Thus, the analysis of 

potential anti-cancer drugs using molecular fingerprints based on the 

Fourier transform infrared spectroscopy (FTIR) spectrum is invaluable 

to the discovery of new therapeutic molecules.13 Gas chromatography 

mass spectrometry/mass spectrometry (GC-MS/MS) has also been 

widely used to determine the mechanisms underlying colorectal cancer 

disease and its biomarkers.14 Metabolomes, or the end products of 

cellular processes, represent a set of metabolites derived from cells, 

tissues, organs, or organisms.13 The aim of this study was thus to 

compare metabolites between HT-29 cells treated with curcumin and 

chemotherapy drugs (5-fluorouracil [5-FU], doxorubicin, and cisplatin) 

to identify those that can predict similar mechanisms of action between 

treatment types. Novel to this study, FTIR allowed further classification 

of curcumin and the chemotherapy drugs based on the HT-29 cells' 

spectrum patterns after administering the four compounds. GC-MS/MS 

was then used to determine the compound or metabolome underlying 

these patterns. 
 

Material and Methods 
 

HT-29 Cell Culture 
 

Human colon adenocarcinoma HT-29 cancer line cells (carrying Smad4 

and p53 mutations) were cultured in McCoy 5A media supplemented 

with 10% fetal bovine serum, 2 mmol/L L- glutamine, 100 U/mL 

penicillin, and 100 μg/mL streptomycin. Cell cultures were maintained 

at 37°C in a humidified incubator containing 5% CO2 and cultured 

every 3 days.15 
 

In Vitro Testing of Cytotoxic Activity via the MTT Method 
 

The MTT method allowed in-vitro testing of cytotoxic activity against 

the HT-29 cells. The cells were bred using a complete medium 

containing Dulbecco's modified eagle medium (DMEM), fetal bovine 

serum 10%, streptomycin 1% as an antibiotic, and amphotericin B as an 

antifungal. The cells were incubated in a 5% CO2 incubator and 

observed every 2–3 days, then harvested after growing up to 80% inside 

the flask with the addition of 0.25% trypsin EDTA. The cells were then 

incubated in a 5% CO2 incubator for 3–5 minutes. The cells that 

detached from the flask were transferred to a centrifuge tube with 5 mL 

complete medium to stop the work of the trypsin enzyme. The cells 

were centrifuged for 5 minutes at 1500 rpm. The resulting supernatant 

was removed, and the pellets were added to 1 mL complete medium. 

Resuspension took place so that the cells were homogeneous.15 

The HT-29 cells were examined with a hemocytometer. A total of 10 

μL of cells were added to 10 μL trypan blue until mixed and piped onto 

the glass of the hemocytometer. The cells were observed under an 

inverted microscope. The known number and concentration of cells 

were then diluted according to the desired concentrations. The cells 

were then placed on 96-well plates (10,000 cells per well). The cells 

were incubated in a 5% CO2 incubator for 24 hours, during which they 

were observed. After 24 hours, curcumin samples were added to the 

cells at different concentrations (3.12 μg/mL, 6.25 μg/mL, 12.5 μg/mL, 

12.5 μg/mL, 100 μg/mL, and 200 μg/mL) dissolved in a complete 

medium. The cells were then incubated for another 24 hours.15The 

curcumin concentrations were removed from the cells so the cells could 

be added to an MTT substance at a concentration of 5 mg/mL (diluted 

ten times). The cells were given as much as 100 μL MTT and then 

incubated 3–4 hours. If the cells subsequently formed a purple formazan 

crystal, this indicated the presence of living cells. The resulting 

formazan crystals were dissolved with the addition of dimethyl 

sulfoxide and read using a microplate reader (Model 550, Bio-Rad, 

USA)  with a wavelength of 590 nm. The absorbance obtained was used 

to curve the relationship between concentration and inhibition 

percentage to determine IC50.15  

 

HT-29 Cell Culture Treatment 
 

Cell suspension in 6-well plates and a hemocytometer helped calculate 

the number of concentrations, with as many as 100,000 cells placed in 

each plate. The cells were incubated in a 5% CO2 incubator for 24 hours, 

then combined with a test compound with an IC concentration of 50 (up 

to 1 mL). A compound treatment test was then carried out by adding 

curcumin compounds and chemotherapy drugs to individual HT-29 

positive cell cultures. There were five types of treatments repeated five 

times each: a control culture that was not given any test compounds, a 

culture that was given cisplatin, a culture given 5-FU, a culture given 

doxorubicin, and a culture given curcumin compounds. The five 

treatment groups were each incubated for 24 hours. 
 

Metabolite Extraction 
 

Metabolites were extracted from the treated and control HT-29 cell 

cultures by removing the well plates from the incubator at 37°C and 

immediately placing them on dry ice (−80°C) or ice (4°C). Additionally, 

l mL growth medium was collected from each well plate and transferred 

to a Eppendorf tube for centrifuging at 1,500 rpm for 5 minutes. The 

resulting supernatant was moved to a new Eppendorf tube.15 
 

Metabolomics Analysis of HT-29 Cell Medium Using FTIR 
 

An HT-29 cell medium sample (as much as 1 ml) was placed on a 

diamond plate and mixed with 95 mg KBr, then compressed to form a 

tablet (3 mm) for FTIR spectrophotometry. The FTIR 

spectrophotometer (Nicolet™ iS50 FTIR Spectrometer, ThermoFisher, 

USA) was equipped with the detector deuterated triglycine sulfate. 

FTIR spectra were recorded in the region of 400–4,000 cm–1, in 

absorbance mode, at 32 scans/min and a resolution of 4 cm–1. Peak 

selection determined the samples' wavelength value, with the data saved 

in .pdf format. Although spectroscopy provides substantial insights, it 

is inadequate for determining precise chemical composition. This 

constraint led to pursuing an alternative approach for comprehensive 

compositional analysis: GC-MS, a sensitive analytical instrument 

utilized in metabolomics that can detect, characterize, and identify 

various chemical constituents and metabolites. 16 
 

Metabolomics Analysis of HT-29 Cell Medium Using GC-MS/MS15 
 

IR spectroscopy is a supplementary technique to GC-MS intended for 

the analysis of intricate variations in compounds.18 The volatile 

constituents and comprehensive chemical distinctions between the 

curcumin- and chemotherapy drug–treated HT-29 cell cultures were 

thus determined using both IR spectroscopy and GC-MS (YL6900 

GC/MS, YL Instrument, Korea). The culture samples were screened 

first with a syringe-driven filter unit. The filtered samples were pipetted 

with a micropipette into the GC-MS vial along with 200 µl methanol 

solvent and homogenized. The GC-MS vials were inserted into the GC-

MS/MS injection site with column types GC 30 m, 0.25 mm, and 0.25 

µm at 50°C for 5 minutes and MS 280°C for 20 minutes.17 
 

Analysis of Raw FTIR Metabolomics Data Using Orange Data Mining 
 

The Fourier Transform Infrared Spectroscopy (FTIR) raw data were 

analyzed using the open-source software Orange Data Mining ver. 3.31. 

The collection of data absorbances were uploaded to Microsoft Excel 

and divided into five targets (one per treatment group). Absorbance 

spectrum data were pre-processed with Gaussian smoothing SD 0.5 and 

rubber band–type baseline correction, then cut according to the 

reference spectrum section of the bond data group. The Select Row 

widget allowed selection of a specific treatment. The absorbance 

spectrum data were then analyzed via multivariate principal component 

analysis and visualized with the Scatter Plot widget.14 
 

Analysis of Raw GC-MS Metabolomics Data Using MS-DIAL 
 

The raw Gas Chromatography-Mass Spectrometry (GC-MS) data were 

analyzed using the open-source software MS-DIAL ver. 4.92, which is 

linked to the GCMS KovatsRI-VS3 database (retrieved from 

http://prime.psc.riken.jp/compms/msdial/main.html). The MS-DIAL 
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parameters were as follows: Data were collected in the mass range of 

0–1000 Da. Peak detection was set at an average peak width of 20 scans 

and a minimum peak height of 1,000 amplitudes. A sigma window 

value of 0.5 with an electron ionization spectrum limit of 10 amplitudes 

was implemented for deconvolution. The identification settings were 

set to a retention index of 20, m/z tolerance of 0.5 Da, EI similarity limit 

at 70%, and identification score limit at 70%. Setting an alignment 

parameter yielded a retention index tolerance of 20, with an EI 

similarity tolerance of 70%. Metabolite annotations were performed by 

comparing the HT-29 cell culture samples' retention index and spectrum 

to those in the database.19 

 

Data Accuracy Analysis with Machine Learning 
 

Owing to the extensive array of metabolites analyzed by several 

devices, researchers often employ statistical methodologies such as 

principal component analysis (PCA). PCA, an unsupervised technique, 

is widely utilized in metabolomics to elucidate the distribution of many 

compounds following dimensional reduction. It has also been 

extensively utilized in metabolomics for biomarker discovery in human 

disorders, including cancer.20 The current study's PCA data accuracy 

was tested via machine learning using the open-source software Orange 

Data Mining ver. 3.31., specifically the models support vector machine 

(SVM) and neural network (NN). The Test and Score widget with cross 

validation–type sample data processing displayed data accuracy, and 

the Confusion Matrix widget gave the proportion of prediction data as 

well as data from previous machine learning prediction results.14 

Machine learning can be used for metabolomic data to identify 

druggable targets or pathways in disease processes, as well as predictive 

metabolites that provide mechanistic inferences of target hypotheses. 

Target-agnostic drug discovery focuses on target pathways, identifying 

metabolites that differentiate individuals with specific diagnoses or 

illnesses. Discriminative metabolites can help develop larger target 

hypotheses for traditional drug discovery by profiling the metabolomes 

of individuals with specific diagnoses or illnesses.21 

 

Results and Discussion 
 

Cytotoxic Activity  
 

Curcumin compounds were tested for cytotoxicity (in IC50) via the 3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

method as compared to three anti-cancer compounds commonly used in 

chemotherapy (doxorubicin, 5-FU, and cisplatin) using HT-29 

colorectal cancer line cells. The IC50 value of each compound was 

obtained from the linear line equation y = ax + b, where y is % inhibition 

and x is the concentration log. The IC50 value, obtained by converting 

to anti-log x, is a 50% concentration of cell growth inhibition in μg/mL 

converted to μM after being multiplied by the molecular weight of each 

compound. The IC50 values of each compound were 102.44 µg/ml for 

curcumin,  12.47 µg/ml for cisplatin, 6.83 µg/ml for 5-FU, and  16.21 

µg/m for doxorubicin. 
 

Metabolite Data Processing with FTIR  
 

Combining all infrared spectrum absorption data from four absorption 

waves (O-H, C-H, N-C=O, and C-O) of each HT-29 cell culture sample 

(curcumin, doxorubicin, 5-FU, cisplatin, and control) yielded 

extracellular metabolite data. The raw data were processed according to 

the Orange Data workflow. Figure 1 features the FTIR absorbance 

results of the pre-processed raw data as compared with the reference 

spectrum. Figure 1. Absorption wave spectrum compared to Relative 

Peak Intensities34 The results of the pre-processed FTIR absorption data 

were compared with infrared absorption spectrum data from each 

functional group.22 The obtained alcohol absorption spectrum was 

determined at wavelengths of 3,200–3,500 cm−1, while the aliphatic 

absorption spectrum appeared at wavelengths 2,800–3,000 cm−1, 

carbonyl absorption spectrum at wavelengths 1,300–1,700 cm−1, and 

amide at wavelengths 1,630–17,000 cm−1. The other functional groups 

appeared to be stacked, so they were not analyzed further. PCA of the 

FTIR absorbance data was then performed on each functional group. 

Absorption at wavelengths 3,200–3,500 cm−1 represented the stretching 

of the O-H bond. Absorption at wavelengths 2,800–3,000 cm−1 was 

dominated by symmetrical stretching vibrations and asymmetry of the  

 

 
 

Figure 1. Absorption wave spectrum compared to Relative Peak 

Intensities34 
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Figure 2.  (a) PCA profile similarities in N-C=O metabolite 

absorption spectrums across control and treated HT-29 cell culture 

medium samples; (b) comparison of N-C=O metabolite absorption 

spectrums across control and treated medium samples. 

 

CH2 and CH3 groups, especially in cell fatty acids. Absorption between 

1,700 and 1,800 cm−1 was characteristic of lipid vibrations. 

Wavelengths 1,300–1,700 cm−1 indicated protein absorption. 

Specifically, amide I on the carbonyl stretching of peptide bonds was 

observed at 1,640 cm−1, sensitive to the secondary structure of the 
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protein. Deformation of the N-H amide protein bond (amide II) 

generated a signal at 1,540 cm−1. Absorption at 1,153 cm−1 was mainly 

associated with C-O hydrogen and non-hydrogen bonds.23 

 

 
Figure 3. GC-MS/MS data visualization after MS-DIAL processing 

 

Peak stretching vibration at wavelength absorption areas of 3,200–

3,500 cm−1, constituting the O-H absorption spectrum, underwent 

additional PCA. This revealed the separation of the metabolic profile of 

the curcumin-treated HT-29 cell culture medium compared to the 

control medium, as was also the case with all chemotherapy drug–

treated media. Each sample thus had a typical metabolome profile,  

showing differences in different O-H wavelength absorption regions. 

Peak wavelength absorption at 2,800–3,000 cm−1 indicated the C-H, or 

fatty acid (aliphatic), region, demonstrating lipogenesis and increased 

membrane lipid saturation. These are associated with the development 

of cancer because it can reduce membrane fluidity and cell 

permeability, thus making cancer cells less susceptible to lipid 

peroxidation and chemotherapy than normal cells.24 A comparison of 

aliphatic uptake data showed the separation of the metabolomic profile 

of the curcumin-treated cell culture medium versus the control medium. 

The overall PCA metabolomic profiles of the four treated HT-29 cell 

culture media showed different C-H absorption metabolites. The 

curcumin-treated medium had lower fatty acid levels compared to the 

three chemotherapy drug–treated media, indicating curcumin is better 

able to suppress fatty acid levels than the assessed chemotherapeutics. 

Fatty acid levels in colorectal cancer patients often increase due to the 

oxidation of fatty acids.25 A previous comparison of fatty acid levels 

between the plasma of colorectal cancer patients with the plasma of 

healthy controls showed an increase in 2-methyl butyric acid–type fatty 

acids and propionic acid in the colorectal cancer patients.26 

PCA also yielded N-C=O absorption wavelength results in the 

metabolites of the control and treated HT-29 culture media, as 

summarized in Supplementary Data 1. This analysis showed further 

similarities in the profiles of the metabolites of cultures treated with 

curcumin compared to those treated with cisplatin (Figure 2). 

Figure 2. (a) PCA profile similarities in N-C=O metabolite absorption 

spectrums across control and treated HT-29 cell culture medium 

samples; (b) comparison of N-C=O metabolite absorption spectrums 

across control and treated medium samples. As shown in Figure 2a, 

treatment with curcumin compared to cisplatin featured the same 

wavelength for amide absorption (N-C=O). This indicates that the 

processing of metabolomic data with PCA makes it easier for 

researchers to determine the separation or grouping of metabolite data 

from various samples. The complexity of the data generated by time 

spectroscopic analysis creates difficulties when comparing metabolite 

profiles between samples. However, metabolomic investigation 

requires meaningful data interpretation. PCA therefore helps examine 

entire iterative measurements of absorption wavelength over a single 

point in time for each sample. One study featured PCA examination of 

metabolite variations between samples to determine whether there were 

systematic changes in the research group.27 Untargeted MS also has the 

potential to generate large amounts of information and compare various  

 

Table 1: GC-MS/MS analysis of five metabolites using t-test 
 

Metabolite 

HT-29 Cell 

Culture 

Treatment 

Mean 

(SD) 
t 

1-Bromo-2-

Chloroethana 

Curcumin 
0,47074 ± 

0,10267 9,733 

(p=0,000) 
Control 

0,01513 ± 

0,02033 

2-Cyanoacetamide 

Curcumin 
0,09153 ± 

0.02392 2,812 

(p=0,045) 
Control 

0,25763 ± 

0,12990 

Dimethylamine 

Curcumin 
0,21521 ± 

0,13726 1,598 

(p=0,185) 
Control 

0,41510 ± 

0,26503 

2-Asam Nitrobenzoic 

Curcumin 
0,03245 ± 

0,01276 1,350 

(p=0,228) 
Control 

0,01147 ± 

0,02634 

Butane 

Curcumin 
0,14017 ± 

0,03535 2,347 

(p=0,72) 
Control 

0,29863 ± 

0,14677 
 

complex metabolite datasets by using a correlation coefficient matrix to 

measure metabolite similarities between different samples.28 

A comparison of the wavelengths of the amide absorbance spectrum 

(N-C=O) of the control, curcumin, and cisplatin culture medium 

samples revealed that the absorption of amide increased with curcumin 

and cisplatin treatments compared to the control. This shows that 

treatment with curcumin successfully inhibits the metabolism of HT-29 

cell amide. Amide, namely L-glutamine, is the second source of 

nutrients for the growth and division of colon cancer cells.29 Glutamine 

is considered fuel for the Krebs cycle through a-ketoglutarate, which 

results in the synthesis of adenosine triphosphate. Glutamine plays an 

important role in cellular antioxidative processes, reducing oxidative 

stress by producing nicotinamide adenine dinucleotide phosphate and 

glutathione through biosynthesis. Glutamine can also control energy 

production, redox homeostasis, and intracellular signaling so that 

tumors are "glutamine addicted," indicating that glutamine and the 

enzymes involved in its route can be targeted in cancer treatment.30 

 

Validation of PCA Data Accuracy with Machine Learning 
 

PCA processing of the FTIR absorbance spectrums, especially the 

comparisons between the treatment and control HT-29 cell culture 

samples, validated the accuracy of the data, as well as the predicted 

proportion and actual confusion matrix values. 
 

Table 2: PCA accuracy validation and confusion matrix of O-H absorption 

wave numbers 
 

PCA Spectrum 

Data 

O-H 

Types of 

Machine 

Learning 

Cross Validation 

Accuracy  Rate 

Score (Average 

for classes) 

Confusion 

Matrix 

of Machine 

Learning 

Algorithm 

results 

CUR CON Support 

Vector 

Machine 

0.96 [4 1] 

[0 5] 

CIS CON 1.0 [5 0] 

[0 5]   

DOX CON 1.0 [5 0] 

[0 5] 

LU CON 1.0 [5 0] 

[0 5] 
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Table 3: Validation of PCA accuracy and confusion matrix of C-H absorption wave number
 

PCA Spectrum Data 

C- H 

Types of Machine 

Learning 

Cross Validation Accuracy Rate Score 

(Average for classes) 

Confusion Matrix of 

Machine Learning 

Algorithm results 

CUR CON Support Vector 

Machine 

0.96 [4 1] 

[0 5] 

CIS CON 1.0 [5 0] 

[0 5] 

DOX CON  1.0 [5 0] 

[0 5] 

FLU CON  1.0 [5 0] 

[0 5] 

 

Table 4: Validation of PCA Accuracy and confusion matrix of N- C=O absorption wave numbers 
 

PCA Spectrum Data 

N-C=O 

Types of 

Machine 

Learning 

Cross Validation Accuracy Rate Score 

(Average for classes) 

Confusion Matrix of Machine 

Learning Algorithm results 

CUR CON Support 0.92 [3 2] 

 Vector  [0 5] 

CIS CON Machine 1.0 [5 0] 

   [0 5] 

DOX CON  1.0 [5 0] 

[0 5] 

FLU CON  1.0 [5 0] 

[0 5] 

 
Figure 4: PCA data visualization after MS-DIAL processing 

 

 
Figure 5: PCA data visualization of unknown MS-DIAL metabolites. 

The blue dot represents the HT-29 cell sample treated with cisplatin, 

and the red dot represents the sample treated with curcumin. 

 

Additional machine learning methods, including SVM and NN models, 

validated the accuracy of the PCA data of each treatment sample 

compared to the control. Internal validation was carried out five times 

in conjunction with SVM model and internal validation via cross-

validation using training datasets to eliminate potential bias caused by 

random separation, as feature selection was not performed in this 

experiment and could therefore use features selected in previous data 

experiments. The limited sample size allowed a resampling test to be 

performed as well. The SVM accuracy analysis and validation of PCA 

FTIR absorbance spectrum data revealed an Area Under the Curve 

(AUC) value of > 0.92 and Classification Accuracy (CA) value of > 

0.80 for all absorption spectrum samples (O-H, C-H, and N-C=O) of 

the curcumin-treated HT-29 cell cultures compared to the control 

showed based on their metabolite profiles (Tables 2–4). The accuracy 

of machine learning predictions can be measured with the confusion 

matrix. Tables 2–4 shows a separation between the metabolite profiles 

of curcumin-treated HT-29 cancer cells compared to the control as 

based on the confusion matrix. The suitability of the machine learning 

algorithms used plays a role in determining data accuracy as well. For 

example, for data validation between treatment and control cells, an 

SVM algorithm can be used for datasets that often cannot be completely 

separated. SVM will try to build a "soft margin" that minimizes data 

training points that are outside the classification limits while allowing 

some points to be misclassified. SVM can only distinguish between two 

classes, and due to its computational complexity, the algorithm does not 

scale well with very large data sets. In the case of metabolites, it is 

therefore often advantageous to perform feature selection before 

training multivariate algorithms.28 Identifying multivariate statistical 

features from data helps distinguish between two separate groups within 

a high-dimensional feature space so that SVM can create an ideal hyper-

plane that sets boundaries and maximizes margins between the two 

groups.31 
 

Metabolite Data Processing with GC-MS/MS  
 

Metabolite annotations were performed by comparing the retention 

index and sample spectrum of each HT-29 cell culture sample with 

those in the MS-DIAL database. This revealed five metabolites from 

each treatment group with similar chromatogram and ion peak patterns 
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to those in the MS-DIAL database. These five metabolites were 1-

 
Figure 6: PCA accuracy validation and confusion matrix of five 

metabolites found via GC-MS/MS. 
 

bromo-2-chloroetana, 2-cyanoacetamide, dimethylamine (DMA), 2-

nitrobenzoic acid, and butane. The annotation of the HT-29 cell culture 

metabolites also showed 300 metabolites that had nothing in common 

with the ones in the MS-DIAL database. Untargeted MS-based 

metabolomic analysis generates large datasets, making the 

identification of metabolites with high accuracy a fundamental 

difficulty. This could be because there are no candidate matches in the 

database or attributes (e.g., mass ratio and retention time pairings) that 

only show similarities to a large number of early structures.32 

To date, there are no studies that support the existence of 1-bromo-2-

chloroethana, 2-nitrobenzoic acid, or butane after cell metabolism in 

colorectal cancer cases. In contrast, 2-cyanoacetate is an organic 

volatile compound previously found in the urine of colorectal cancer 

patients using GC-MS.33 2-cyanoacetamide in the curcumin-treated 

HT-29 cell medium was significantly decreased compared to the control 

and other treated media. As shown in Table 1, 2-cyanoacetamide had a 

p-value of < 0.05, indicating a significant difference between the 

curcumin-treated and control media. This implies that 2-cyanoacetate is 

a suitable biomarker of HT-29 cells' response to curcumin treatment in 

targeted metabolomic in vivo analysis.Figure 3. GC-MS/MS data 

visualization after MS-DIAL processing. Dimethylamine (DMA) 

metabolites in the curcumin-treated HT-29 cell medium showed higher 

levels compared to media treated with all three chemotherapy drugs 

(Figure 3), suggesting that curcumin plays no role in reducing this 

metabolite in HT-29 cells. This is in contrast with the research of 

Bednarz-Misa et al. (2020), who showed that DMA levels increase with 

malignancy stage in colorectal cancer patients.34 Other research on the 

metabolomic profile of colorectal cancer metastases to spleen nodes 

found accumulated DMA in line with metastatic development versus 

normal tissue.25 DMA is a simple aliphatic amine found in human urine 

and other bodily fluids such as plasma. The main source of DMA 

circulating in human urine is asymmetric DMA, which is released from 

the demethylated protein arginine product.35 DMA can give rise to 

nitroso-DMA in acidic gastric juices in the presence of nitrates from 

carcinogenic foods with DNA alkylation activity. In humans, most 

DMA (95%) is excreted by the kidneys, while 1–3% of DMA is 

excreted as feces and exhaled air.36 DMA's T-test yielded a p-value of 

> 0.05, showing a negligible difference between the curcumin-treated 

and control HT-29 cell cultures. As such, DMA cannot be used as a 

biomarker of HT-29 cell response to curcumin treatment.   Analysis of 

extracellular metabolite data from the HT-29 culture media began with 

combining all raw intensity data from the four treatment samples' m/z. 

The results were then compared with MS-DIAL references and 

visualized in a boxplot. PCA of the five metabolites similar to the MS-

DIAL references of each treatment and control group were visualized 

with Orange Data scatter plot software (Figure 4). The metabolite PCA 

showed no resemblance between the five samples and the MS-DIAL 

references (Figure 5). The overall PCA of the five metabolite profiles, 

unknown metabolites from the control sample, and all four treated HT-

29 cell cultures showed different and typical metabolite profiles in the 

curcumin-treated medium. Figure 5 shows an unknown metabolite 

profile in the curcumin-treated HT-29 cell medium adjacent to that of 

the cisplatin-treated medium. This is in support of these media's 

similarity in the FTIR metabolite profiles. Figure 4. PCA data 

visualization after MS-DIAL processing. Figure 5. PCA data 

visualization of unknown MS-DIAL metabolites. The blue dot 

represents the HT-29 cell sample treated with cisplatin, and the red dot 

represents the sample treated with curcumin. The PCA results of the 

five metabolites with the same time and retention index from each 

media sample validated the accuracy of the data, as well as the predicted 

proportion value and actual confusion matrix value, as shown in e 1ure 

6. The validation analysis of the fifth PCA data metabolite from the MS-

DIAL annotation of all treatment and control samples showed an AUC 

value of > 0.92, indicating that although the metabolites 2-nitrobenzoic 

acid, DMA, and butane have a p-value of > 0.05 with machine learning, 

the NN algorithm can show data separation. Subsequent evaluation of 

NN machine learning prediction performance with the confusion matrix 

showed that all five MS-DIAL annotation metabolites could be 

distinguished in the curcumin-treated HT-29 cell culture, but not in the 

control or other treatment groups. Figure 6. PCA accuracy validation 

and confusion matrix of five metabolites found via GC-MS/MS. PCA 

data validation for a large set of data uses appropriate NN algorithms 

that can process these data well. Units known as neurons form an 

artificial NN and combine many inputs to produce a single output. The 

network estimates the relationship between the input (e.g., absorbance 

spectrum) and the intended output (e.g., disease risk). Inputs, outputs, 

and intermediate layers, also referred to as hidden layers, form the 

neurons' organizational structure.37 The neurons of the first hidden layer 

receive input from the variables of the layer input after being multiplied 

by a series of numbers called weights. Each neuron takes input and 

transforms it by applying a nonlinear activation function, such as a 

sigmoid or rectified linear unit, and adding bias to the result.38 
 

Conclusion 
 

HT-29 cell culture media treated with curcumin and cisplatin displayed 

similarities in metabolite profiles based on their FTIR N-C=O and 

amide absorbance spectrums. Additionally, the metabolite 2-

cyanoacetamide can be used as a biomarker of HT-29 cells' response to 

treatment with curcumin. However, the profiles of five metabolites 

resulting from the GC-MS/MS of all five culture samples do not predict 

similarities in the mechanism of action between curcumin and the 

chemotherapy drugs cisplatin, 5-FU, and doxorubicin. It is challenging 

to establish a relationship between these metabolite profiles and the 

proteins related to colorectal cancer due to the complexity of the cellular 

response mechanisms. Further research should therefore focus on in 

vivo experimental validation that upgrades metabolomic analysis tools 

to confirm the similar metabolite profiles between curcumin and 

cisplatin treatments, and to determine if any metabolites can predict 

similarities in the mechanism of action of curcumin to chemotherapy 

drugs. 
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