The Effect of Pomegranate Peel (Punica granatum L.) Extract in Chitosan Nanoparticle on the Macrophage Polarization in DSS-Induced Mice Tropical Journal of Natural Product Research
Main Article Content
Abstract
Macrophage polarization towards type 1 (M1) or type 2 (M2) is a critical determinant in re-establishing inflammation within the colon. Pomegranate is widely recognized as a biological source for its substantial quantity and potent anti-inflammatory properties. This investigation compares the effects of chitosan nanoparticles infused with pomegranate peel extract (Punica granatum L.) on the polarization of macrophages in mice's peritoneal fluid induced with dextran sodium sulfate (DSS). In this study, the male Balb/c mice were aged 12-16 weeks and had a body weight of 20-30 g. Randomly, six distinct groups of Balb/c mice were established. A total of 42 days of treatment, or 3 × 14 days, were administered in six treatment groups. After the experiment, the quantity of M1 and M2 macrophages in the peritoneal fluid was quantified through flow cytometric analysis. After administering 240 mg/kg chitosan-PPE nanoparticles (10.57±0.51%) increase in M2 macrophages was observed (p<0.05). Upon administration of 480 mg/kg chitosan-PPE nanoparticles (P2 groups) and unadulterated PPE at 480 mg/kg doses (P3 groups) and comparison to the DSS groups, a substantial increase in M2 macrophages (11.20±2.10%) and P3 groups (17.85±0.44%) was observed. In contrast, a concurrent decrease in M1 macrophages (67.23±2.18%) and P3 groups (60.33±8.42%) was observed (p<0.05). These results support the evidence notion that pomegranate peel extract has a significant anti-inflammatory effect and influences the polarization of macrophages.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Mowat AMI, Bain CC. Mucosal macrophages in intestinal homeostasis and inflammation. J Innate Immun. 2011; 3(6):550–564. Doi: 10.1159/000329099
Tatiya-Aphiradee N, Chatuphonprasert W, Jarukamjorn K. Immune response and inflammatory pathway of ulcerative colitis. J Basic Clin Physiol Pharmacol. 2018; 30(1):1-10. Doi: 10.1515/jbcpp-2018-0036
Gajendran M, Loganathan P, Jimenez G, Catinella AP, Ng N, Umapathy C, Ziade N, Hashash JG. A comprehensive review and update on ulcerative colitis. Dis Mon. 2019; 65(12):1-37. Doi: 10.1016/j.disamonth.2019.02.004
Lutgens MWMD, van Oijen MGH, van der Heijden GJMG, Vleggaar FP, Siersema PD, Oldenburg B. Declining risk of colorectal cancer in inflammatory bowel disease: an updated meta-analysis of population-based cohort studies. Inflamm Bowel Dis. 2013; 19(4):789–799. Doi: 10.1097/mib.0b013e31828029c0
Bilsborough J, Fiorino MF, Henkle BW. Select animal models of colitis and their value in predicting clinical efficacy of biological therapies in ulcerative colitis. Expert Opin Drug Discov. 2021; 16(5):567–577. Doi: 10.1080/17460441.2021.1851185
Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol. 2014; 104(15):1-14. Doi: 10.1002/0471142735.im1525s104
Perše M, Cerar A. Dextran sodium sulphate colitis mouse model: Traps and tricks. J Biomed Biotechnol. 2012; 2012:1-13. Doi: 10.1155/2012/718617
Low D, Nguyen DD, Mizoguchi E. Animal models of ulcerative colitis and their application in drug research. Drug Des Devel Ther. 2013; 7:1341–1356. Doi: 10.2147/dddt.s40107
Galli SJ, Borregaard N, Wynn TA. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol. 2011; 12(11):1035–1044. Doi: 10.1038/ni.2109
Lissner D, Schumann M, Batra A, Kredel LI, Kühl AA, Erben U, May C, Schulzke JD, Siegmund B. Monocyte and M1 Macrophage-induced Barrier Defect Contributes to Chronic Intestinal Inflammation in IBD. Inflamm Bowel Dis. 2015; 21(6):1297-1305. Doi: 10.1097/mib.0000000000000384
Lisi L, Stigliano E, Lauriola L, Navarra P, Dello Russo C. Proinflammatory-activated glioma cells induce a switch in microglial polarization and activation status, from a predominant M2b phenotype to a mixture of M1 and M2a/B polarized cells. ASN Neuro. 2014; 6(3):171–183. Doi: 10.1042/an20130045
Kusmardi K, Azzahra Baihaqi L, Estuningtyas A, Sahar N, Sunaryo H, Tedjo A. Ethanol Extract of Pomegranate (Punica granatum) Peel in Increasing the Expression of Caspase-3 in DSS-Induced Mice. Int J Inflam. 2021; 2021:1-7. Doi: 10.1155/2021/4919410
Kusmardi K, Hermanto D, Estuningytas A, Tedjo A, Priosoeryanto BP. The potency of Indonesia’s pomegranate peel ethanol extract (Punica granatum Linn.) as anti-inflammatory agent in mice colon induced by dextran sodium sulfate: Focus on cyclooxygenase-2 and iNOS expressions. Asian J Pharm Clin Res. 2017; 10(12):370–375. Doi: 10.22159/ajpcr.2017.v10i12.21390
Kusmardi K, Yasmin Khalilah R, Zuraidah E, Estuningtyas A, Tedjo A. The Effect of Pomegranate Peel Ethanol Extract on TNF-α Expression of Mice Colonic Epithelial Cells Induced Using Dextran Sodium Sulfate (DSS). Phcog J. 2022; 14(3):480–488. Doi: 10.5530/pj.2022.14.61
Abd El-Rady NM, Dahpy MA, Ahmed A, Elgamal DA, Hadiya S, Ahmed MAM, Sayed ZEA, Abdeltawab D, Abdelmohsen AS, Farrag AAM, Ashmawy AM, Khairallah MK, Galal HM. Interplay of Biochemical, Genetic, and Immunohistochemical Factors in the Etio-Pathogenesis of Gastric Ulcer in Rats: A Comparative Study of the Effect of Pomegranate Loaded Nanoparticles Versus Pomegranate Peel Extract. Front Physiol. 2021; 12:1–20. Doi: 10.3389/fphys.2021.649462
Rahaman MM, Rakib A, Mitra S, Tareq AM, Emran TB, Shahid-Ud-Daula AFM, Amin MN, Simal-Gandara J. The genus Curcuma and inflammation: Overview of the pharmacological perspectives. Plants. 2021; 10(1):1–19. Doi: 10.3390/plants10010063
Vučić V, Grabež M, Trchounian A, Arsić A. Composition and Potential Health Benefits of Pomegranate: A Review. Curr Pharm Des. 2019; 25(16):1817–1827. Doi: 10.2174/1381612825666190708183941
Velagapudi R, Baco G, Khela S, Okorji U, Olajide O. Pomegranate inhibits neuroinflammation and amyloidogenesis in IL-1β-stimulated SK-N-SH cells. Eur J Nutr. 2016; 55(4):1653–1660. Doi: 10.1007/s00394-015-0984-0
Zhao F, Pang W, Zhang Z, Zhao J, Wang X, Liu Y, Wang X, Feng Z, Zhang Y, Sun W, Liu J. Pomegranate extract and exercise provide additive benefits on improvement of immune function by inhibiting inflammation and oxidative stress in high-fat-diet-induced obesity in rats. J Nutr Biochem. 2016; 32:20-28. Doi: 10.1016/j.jnutbio.2016.02.003
Kusmardi K, Tumpu NA, Estuningtyas A. Phaleria macrocarpa leaf extract-chitosan nanoparticles supress angiogenesis induced by dextran sodium sulfate in mice colon. Int J Appl Pharm. 2019; 11(6):122–124. Doi: 10.22159/ijap.2019.v11s6.33574
Xu J, Zhao Y, Aisa HA. Anti-inflammatory effect of pomegranate flower in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Pharm Biol. 2017; 55(1):2095-2101. Doi: 10.1080/13880209.2017.1357737
Aharoni S, Lati Y, Aviram M, Fuhrman B. Pomegranate juice polyphenols induce a phenotypic switch in macrophage polarization favoring a M2 anti-inflammatory state. Biofactors. 2015; 41(1):44-51. Doi: 10.1002/biof.1199
Mastrogiovanni F, Mukhopadhya A, Lacetera N, Ryan MT, Romani A, Bernini R, Sweeney T. Anti-Inflammatory Effects of Pomegranate Peel Extracts on In Vitro Human Intestinal Caco-2 Cells and Ex Vivo Porcine Colonic Tissue Explants. Nutrients. 2019; 11(3):548. Doi: 10.3390/nu11030548
Čolić M, Bekić M, Tomić S, Đokić J, Radojević D, Šavikin K, Miljuš N, Marković M, Škrbić R. Immunomodulatory Properties of Pomegranate Peel Extract in a Model of Human Peripheral Blood Mononuclear Cell Culture. Pharmaceutics. 2022; 14(6):1140. Doi: 10.3390/pharmaceutics14061140
Osawa Y, Banno Y, Nagaki M, Brenner DA, Naiki T, Nozawa Y, Nakashima S, Moriwaki H. TNF-alpha-induced sphingosine 1-phosphate inhibits apoptosis through a phosphatidylinositol 3-kinase/Akt pathway in human hepatocytes. J Immunol. 2001; 167(1):173-180. Doi: 10.4049/jimmunol.167.1.173
Bosani M, Ardizzone S, Porro GB. Biologic targeting in the treatment of inflammatory bowel diseases. Biologics. 2009;3:77-97. Retraction in: Biologics. 2014; 8:39. Doi: 10.2147/BTT.S60301
Neyrinck AM, Van Hée VF, Bindels LB, De Backer F, Cani PD, Delzenne NM. Polyphenol-rich extract of pomegranate peel alleviates tissue inflammation and hypercholesterolaemia in high-fat diet-induced obese mice: Potential implication of the gut microbiota. Br J Nutr. 2013; 109(5):802–809. Doi: 10.1017/s0007114512002206
Mcalindon ME, Hawkey CJ, Mahida YR. Expression of interleukin 1 and interleukin 1 converting enzyme by intestinal macrophages in health and inflammatory bowel disease. Gut. 1998; 42(2):214-219. Doi: 10.1136/gut.42.2.214
Boakye YD, Groyer L, Heiss EH. An increased autophagic flux contributes to the anti-inflammatory potential of urolithin A in macrophages. Biochim Biophys Acta Gen Subj. 2018; 1862(1):61–70. Doi: 10.1016/j.bbagen.2017.10.006
Garcia-Muñoz C, Vaillant F. Metabolic fate of ellagitannins: implications for health, and research perspectives for innovative functional foods. Crit Rev Food Sci Nutr. 2014; 54(12):1584–1598. Doi: 10.1080/10408398.2011.644643
Ge G, Bai J, Wang Q, Liang X, Tao H, Chen H, Wei M, Niu J, Yang H, Xu Y, Hao Y, Xue Y, Geng D. Punicalagin ameliorates collagen-induced arthritis by downregulating M1 macrophage and pyroptosis via NF-κB signaling pathway. Sci China Life Sci. 2022; 65(3):588–603. Doi: 10.1007/s11427-020-1939-1
Duda-Chodak A, Tarko T, Satora P, Sroka P. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr. 2015; 54(3):325-341. Doi: 10.1007/s00394-015-0852-y
Rennick DM, Fort MM. Lessons from genetically engineered animal models. XII. IL-10-deficient (IL-10-/-) mice and intestinal inflammation. Am J Physiol Gastrointest Liver Physiol. 2000; 278(6):829-833. Doi: 10.1152/ajpgi.2000.278.6.g829
Glocker EO, Kotlarz D, Boztug K, Gertz EM, Schäffer AA, Noyan F, Perro M, Diestelhorst J, Allroth A, Murugan D, Hätscher N, Pfeifer D, Sykora KW, Sauer M, Kreipe H, Lacher M, Nustede R, Woellner C, Baumann U, Salzer U, Koletzko S, Shah N, Segal AW, Sauerbrey A, Buderus S, Snapper SB, Grimbacher B, Klein C. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. 2009; 361(21):2033-2045. Doi: 10.1056/nejmoa0907206
Azizi G, Pouyani MR, Abolhassani H, Sharifi L, Dizaji MZ, Mohammadi J, Mirshafiey A, Aghamohammadi A. Cellular and molecular mechanisms of immune dysregulation and autoimmunity. Cell Immunol. 2016; 310:14-26. Doi: 10.1016/j.cellimm.2016.08.012