Development and Validation of Purple Sweet Potato (Ipomea batatas L.) Pigment as a Titrimetric Indicator for Hydrochloric Acid Quantification

Main Article Content

Maria A.U. Leba
Anselmus B. Baunsele
Sisilia D.B. Mau
Maximus M. Taek
Noemia A. Ruas
Adilson D. C. Ruas
Maria B. Tukan
Erly G. Boelan
Faderina Komisia

Abstract

An analytical method development requires a validation procedure. The method is valid if it meets certain performance criteria. The purpose of this study was to validate purple sweet potato (PSP) pigment (PSPP) as titration indicator (TI) for hydrochloric acid quantification. PSPP was extracted using analytical-grade (AG) and medical-grade (MG) ethanol. PSPP extracted by AG and MG ethanol were designated PSPP-AG and PSPP-MG, respectively. PSPP-AG and PSPP-MG were used as indicators in the titration of HCl with NaOH, and the method was validated by assessing the following parameters; precision, accuracy, linearity, limit of quantification (LoQ), limit of detection (LoD), robustness, and uncertainty. Results demonstrated that PSPP-AG and PSPP-MG have high linearity with R² values of 0.9990 and 0.9991, respectively. They also have high accuracy with recovery of 102.4%, and high precision with coefficient of variation (CV) ranging from 0.1609% to 0.8773%. PSPP-AG and PSPP-MG gave LoD of 0.0220 M and 0.0213 M, and LoQ of 0.0734 M and 0.0709 M, respectively. PSPP-AG and PSPP-MG had excellent reproducibility, with CV ranging from 0.199% to 0.518%, and low uncertainty (0.000262 M and 0.000905 M). PSPP-AG and PSPP-MG are robust indicators; they were insensitive to changes in treatment conditions, with t-stat < t-table of 3.475 < 4.303 for variations in sample volume, and 1.380 < 12.706 for variations in NaOH concentration. The HCl content quantified by PSPP-AG and PSPP-MG was 0.041 M, the same as that obtained with methyl red and phenolphthalein. Therefore, PSPP-MG and PSPP-AG are valid indicators for HCl quantification in pharmaceutical dosage forms.  

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Leba, M. A., Baunsele, A. B., Mau, S. D., Taek, M. M., Ruas, N. A., Ruas, A. D. C., Tukan, M. B., Boelan, E. G., & Komisia, F. (2025). Development and Validation of Purple Sweet Potato (Ipomea batatas L.) Pigment as a Titrimetric Indicator for Hydrochloric Acid Quantification. Tropical Journal of Natural Product Research (TJNPR), 9(5), 1933 – 1938. https://doi.org/10.26538/tjnpr/v9i5.7

References

1. Ahumada Forigua DA, Meija J. Titration endpoint challenge. Anal Bioanal Chem. 2019;411(1):1-2. doi:10.1007/s00216-018-1430-y

2. Haque SM, Ahmad A. Development and Validation of Analytical Method for Quantification of Acetic Acid Content in Amlodipine Besylate. Int J Pharm Pharm Sci. 2019;(4):8-11. doi:10.22159/ijpps.2019v11i4.31672

3. Dutta J, Priyanka. A facile approach for the determination of degree of deacetylation of chitosan using acid-base titration. Heliyon. 2022;8(7):1-8. doi:10.1016/j.heliyon.2022.e09924

4. Pattarapongdilok N, Malichim P, Simmee N, Sichaem J. Senna Flower Extract As An Indicator forAcid-Base Titration. Rasayan J Chem. 2021;14(2):1402-1407.

5. Yun TY, D. CB. Supporting Information Surface Hydroxyl Chemistry of Titania and Alumina Supports: Quantitative Titration and Temperature Dependence of Surface Brønsted Acid-Base Parameters. ACS Appl Mater Interfaces. 2023;15(5):6868-6876.

6. Kapilraj N, Keerthanan S, Sithambaresan M. Natural Plant Extracts as Acid-Base Indicator and Determination of Their pKa Value. J Chem. 2019;2019. doi:10.1155/2019/2031342

7. Cséfalvay E, Hajas T, Mika LT. Environmental sustainability assessment of a biomass-based chemical industry in the Visegrad countries: Czech Republic, Hungary, Poland, and Slovakia. Chem Pap. 2020;74(9):3067-3076. doi:10.1007/s11696-020-01172-8

8. Maleki A, Panahzadeh M, Eivazzadeh-keihan R. Agar: a natural and environmentally-friendly support composed of copper oxide nanoparticles for the green synthesis of 1,2,3–triazoles. Green Chem Lett Rev. 2019;12(4):395-406. doi:10.1080/17518253.2019.1679263

9. Khan MR, Ahmad K, Akram R, Asif HM, Ahmad B, Ali T, Anjum I, Sami A. Green Synthesis, Characterization and Antibacterial Potential of Silver Nanoparticles from Onosma bracteatum Extract. Trop J Nat Prod Res. 2022;6(2):202-206. doi:10.26538/tjnpr/v6i2.6

10. Vadivel E, Chipkar SD. Eco-Friendly Natural Acid-Base Indicator Properties of Four Flowering Plants from Western Ghats. Int J Pharm Pharm Sci. 2016;8(6):250-252.

11. Alam FM, Kurnianingsih N, Fatchiyah F. Phytochemical Analysis of Purple Sweet Potatoes (Ipomoea batatas) Roots Extract From Lawang and Kawi Mountain Cultivar, East Java, Indonesia. J Exp Life Sci. 2022;12(1):17-22. doi:10.21776/ub.jels.2022.012.01.03

12. Gras CC, Nemetz N, Carle R, Schweiggert RM. Anthocyanins from purple sweet potato (Ipomoea batatas (L.) Lam.) and their color modulation by the addition of phenolic acids and food-grade phenolic plant extracts. Food Chem. 2017;235:265-274. doi:10.1016/j.foodchem.2017.04.169

13. Chen CC, Lin C, Chen MH, Chiang PY. Stability and Quality of Anthocyanin in Purple Sweet Potato Extracts. Foods. 2019;8(393):1-13. doi:10.3390/foods8090393

14. Li J, Zhang L, Liu Y. Optimization of extraction of natural pigment from purple sweet potato by response surface methodology and its stability. J Chem. 2013:1-6. doi:10.1155/2013/590512

15. Dwiyanti G, Siswaningsih W, Febrianti A. Production of purple sweet potato (Ipomoea batatas L.) juice having high anthocyanin content and antioxidant activity. J Phys Conf Ser. 2018;1013(1):1-8. doi:10.1088/1742-6596/1013/1/012194

16. Wu H, Oliveira G, Lila MA. Protein-binding approaches for improving bioaccessibility and bioavailability of anthocyanins. Compr Rev Food Sci Food Saf. 2023;22(1):333-354. doi:10.1111/1541-4337.13070

17. Oliveira H, Fernandes A, Brás NF, Mateus N, de Freitas V, Fernandes I. Anthocyanins as antidiabetic agents—in vitro and in silico approaches of preventive and therapeutic effects. Molecules. 2020;25(17):1-30. doi:10.3390/molecules25173813

18. Khoo HE, Azlan A, Tang ST, Lim SM. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res. 2017;61(1):1-21. doi:10.1080/16546628.2017.1361779

19. Sharma P, Gupta R, Roshan S, Sahu S, Tantuway S, Shukla A, Garg A. Plant Extracts as Acid Base Indicator: An Overview. Inven Rapid Planta Act. 2013(3):1-3.

20. Hoa VT, Thang NQ, Tan L V, Tran LTT. Exploring Plant Species in Vietnam for the Production of pH Indicator Paper. Trop J Nat Prod Res. 2023;7(10):4889-4893.

21. Leba MAU, Boelan EG, Taek MM, et al. Exploring Purple Sweet Potato Pigment as An Eco-Friendly Titration Indicator for Acid Determination. Trop J Nat Prod Res. 2024;8(6):7403-7409.

22. Março PH, Poppi RJ, Scarminio IS, Tauler R. Investigation of the pH effect and UV radiation on kinetic degradation of anthocyanin mixtures extracted from Hibiscus acetosella. Food Chem. 2011;125(3):1020-1027. doi:10.1016/j.foodchem.2010.10.005

23. Pham TN, Quoc Toan T, Duc Lam T, et al. Anthocyanins Extraction from Purple Sweet Potato (Ipomoea batatas (L.) Lam): The effect of pH Values on Natural Color. IOP Conf Ser Mater Sci Eng. 2019;542(1):1-5. doi:10.1088/1757-899X/542/1/012031

24. Egurrola GE, Mazabel AP, García J. Development and Validation of a Complexometric and Potentiometric Titration Method for the Quantitative Determination of Zinc Pyrithione in Shampoo. J Anal Methods Chem.2021:1-5. doi:10.1155/2021/6661744

25. Umarov UA, Maslov OY, Kolisnyk S V, Fathullaeva М. Development And Validation Of The Conductometric Titration Method Of Quantitative Determination Of Free Organic Acids In The Anise Fruits. Eur J Mol Clin Med. 2020;7(3):3874-3883.

26. Ivanov A, Smırnov I, Murashko T, Trusova M, Stepanova E. Novel and validated non-aqueous titrimetric method for determination of perspective potassium-sparing diuretic drug candidate in pure form and pharmaceutical formulation. Malaysian J Anal Sci. 2021;25(1):95-104.

27. Taufik M, Seveline S, Saputri ER. Validation of Method of Calcium Analysis in Fresh Milk using Complexometric Titration. Agritech. 2018;38(2):187-193. doi:10.22146/agritech.25459

28. Shrivastava A, Gupta V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles Young Sci. 2011;2(1):21-25. doi:10.4103/2229-5186.79345

29. Marson BM, Concentino V, Junkert AM, Fachi MM, Vilhena RO, Pontarolo R. Validation Of Analytical Methods In A Pharmaceutical Quality System: An Overview Focused on HPLC Methods. Quím Nova. 2020;43(8):1190-1203.

30. Yunarto N, Calvin CC, Sulistyowati I, Oktoberia IS, Reswandaru UN, Elya Berna, Sauriasari R, Mihardja LK. Development and Validation of a High-Performance Liquid Chromatography-Based Method for Catechin Isolated from the Leaves of Gambir (Uncaria gambir Roxb). Trop J Nat Prod Res. 2023;7(3):2569-2573. doi:10.26538/tjnpr/v7i3.16

31. Heyden YV, Nijhuis A, Smeyers-Verbeke J, Vandeginste BG, Massart D. Guidance for Robustness/Ruggedness Tests in Method Validation. J Pharm Biomed Anal. 2001;24(5-6):723-753.