Exploring the In Vitro Anti-Inflammatory Effect and In Silico Toxicity Profile of Curcuma aeruginosa Roxb. Extract in RAW 264.7 Macrophages
Main Article Content
Abstract
Chronic inflammation is implicated in numerous diseases, and targeting pro-inflammatory pathways is a promising therapeutic approach. Curcuma aeruginosa Roxb. known for its traditional medicinal uses, contains sesquiterpenes that may offer anti-inflammatory benefits. This study examines the anti-inflammatory properties of ethanol extract from C. aeruginosa Roxb. rhizome on nitric oxide (NO) production in LPS-stimulated RAW 264.7 macrophages using in vitro and in silico approaches. The in vitro analysis was conducted by treating RAW 264.7 cells with varying concentrations of the extract (15, 30, and 60 µg/mL), followed by NO measurement using the Griess assay to evaluate inhibition. The IC50 value of the extract was determined to be 29.03 ± 4.37 µg/mL. Notably, cell viability analysis using the WST-1 assay confirmed that these treatment concentrations did not induce toxicity in the cells. In the in silico analysis, 17 sesquiterpene compounds identified from the extract were screened for bioactivity and toxicity, then tested in molecular docking and molecular dynamics simulations with primary inflammatory proteins, including iNOS, IKKβ, ERK2, JNK1, and p38. Molecular docking and molecular dynamics results highlighted three key compounds, which were dehydrochromolaenin, pyrocurzerenone, and turmeronol B at exhibited strong binding affinities, particularly with iNOS, indicating stable interactions with significant anti-inflammatory potential. These findings suggest that C. aeruginosa rhizome extract effectively reduces NO production in vitro and demonstrates molecular interactions that inhibit inflammatory mediators in silico. This extract holds potential as a natural anti-inflammatory agent with a multifaceted mechanism of action against inflammatory signaling pathways.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018; 9(6):7204-7218. doi:10.18632/oncotarget.23208
Jogpal V, Sanduja M, Dutt R, Garg V, Tinku. Advancement of nanomedicines in chronic inflammatory disorders. Inflammopharmacology. 2022; 30(2):355-368. doi:10.1007/s10787-022-00927-x
Park YJ, Cheon SY, Lee DS, Cominguez DC, Zhang Z, Lee S, An HJ. Anti-Inflammatory and Antioxidant Effects of Carpesium cernuum L. Methanolic Extract in LPS-Stimulated RAW 264.7 Macrophages. Mediators Inflamm. 2020; 2020. doi:10.1155/2020/3164239
Tucureanu MM, Rebleanu D, Constantinescu CA, Deleanu M, Voicu G, Butoi E, Calin M, Manduteanu I. Lipopolysaccharide-induced inflammation in monocytes/macrophages is blocked by liposomal delivery of Gi-protein inhibitor. Int J Nanomedicine. 2017; 13:63-76. doi:10.2147/IJN.S150918
García-Aranda MI, Gonzalez-Padilla JE, Gómez-Castro CZ, Gómez-Gómez YM, Rosales-Hernández MC, García-Báez EV, Franco-Hernández MO, Castrejón-Flores JL, Padilla-Martínez II. Anti-inflammatory effect and inhibition of nitric oxide production by targeting COXs and iNOS enzymes with the 1, 2-diphenylbenzimidazole pharmacophore. Bioorg Med Chem. 2020; 28(9):115427. doi:10.1016/j.bmc.2020.115427
Teslim OA. Side Effects of Non-Steroidal Anti-Inflammatory Drugs: The Experience of Patients with Musculoskeletal Disorders. Am J Health Res. 2014; 2(4):106. doi:10.11648/j.ajhr.20140204.11
Thomas Td, Jose S. Comparative phytochemical and anti-bacterial studies of two indigenous medicinal plants Curcuma caesia Roxb. and Curcuma aeruginosa Roxb. Int J Green Pharm. 2014; 8(1):65. doi:10.4103/0973-8258.126828
Siahaan S, Aryastami NK. Policy Study on the Development of Medicinal Plants in Indonesia. Health Research and Development Media. 2018; 28(3):157-166. doi:10.22435/mpk.v28i3.119
Sari AP, Supratman U. Phytochemistry and Biological Activities of Curcuma aeruginosa (Roxb.). Indones J Chem. 2022; 22(1):576. doi:10.22146/ijc.70101
Djati MS, Christina YI, Rifa’i M. The combination of Elephantopus scaber and Sauropus androgynus promotes erythroid lineages and modulates follicle-stimulating hormone and luteinizing hormone levels in pregnant mice infected with Escherichia coli. Vet World. 2021:1398-1404. doi:10.14202/vetworld.2021.1398-1404
Dwijayanti DR, Widyananda MH, Hermanto FE, Soewondo A, Afiyanti M, Widodo N. Revealing the anti-inflammatory activity of Euphorbia hirta extract: transcriptomic and nitric oxide production analysis in LPS-Induced RAW 264.7 cells. Food Agric Immunol. 2024; 35(1). doi:10.1080/09540105.2024.2351360
Widyananda MH, Wicaksono ST, Rahmawati K, Puspitarini S, Ulfa SM, Jatmiko YD, Masruri M, Widodo N. A Potential Anticancer Mechanism of Finger Root (Boesenbergia rotunda) Extracts against a Breast Cancer Cell Line. Scientifica (Cairo). 2022; 2022:1-17. doi:10.1155/2022/9130252
Widyananda MH, Muflikhah L, Ulfa SM, Widodo N. Unveiling the antibreast cancer mechanism of Euphorbia hirta ethanol extract: computational and experimental study. J Biol Act Prod Nat. 2024; 14(3):359-382. doi:10.1080/22311866.2024.2361684
Lind M, Hayes A, Caprnda M, Petrovic D, Rodrigo L, Kruzliak P, Zulli A. Inducible nitric oxide synthase: Good or bad? Biomed Pharmacother. 2017; 93:370-375. doi:10.1016/j.biopha.2017.06.036
Andrina S, Churiyah C, Nuralih N. Anti-Inflammatory Effect of Ethanolic Extract of Curcuma aeruginosa Roxb Rhizome, Morinda Citrifolia Fruit and Apium graveolens Leaf on Lipopplysaccharide-induce RAW 264.7 Cell Lines. Indones J Cancer Chemoprevent. 2017; 6(3):84. doi:10.14499/indonesianjcanchemoprev6iss3pp84-88
Dewi IP, Dachriyanus, Aldi Y, Ismail NH, Hefni D, Susanti M, Syafri S, Wahyuni FS. Curcuma aeruginosa Roxb. Extract Inhibits the Production of Proinflammatory Cytokines on RAW 264.7 Macrophages. Int J Appl Pharm. 2024:41-44. doi:10.22159/ijap.2024.v16s1.08
Iqbal M, Kurniawan RV, Nurfani HDW, Roestamadji RI, Luthfi M, Setyowati D, Setijanto RD, Surboyo MDC. Molecular docking analysis of major active compounds of pomegranate peel extract (Punica granatum L.) in inhibiting cyclooxygenase enzyme. World J Adv Res Rev 2023; 20(3):1824-1842. doi:10.30574/wjarr.2023.20.3.2653
Gamble C, McIntosh K, Scott R, Ho KH, Plevin R, Paul A. Inhibitory kappa B kinases as targets for pharmacological regulation. Br J Pharmacol. 2012; 165(4):802-819. doi:10.1111/j.1476-5381.2011.01608.x
Hegazy MEF, Hamed AR, Mohamed TA, Debbab A, Nakamura S, Matsuda H, Paré PW. Anti-inflammatory sesquiterpenes from the medicinal herb Tanacetum sinaicum. RSC Adv. 2015; 5(56):44895-44901. doi:10.1039/C5RA07511D
Wang Y, Jia Q, Zhang Y, Wei J, Liu P. Amygdalin Attenuates Atherosclerosis and Plays an Anti-Inflammatory Role in ApoE Knock-Out Mice and Bone Marrow-Derived Macrophages. Front Pharmacol. 2020; 11. doi:10.3389/fphar.2020.590929
Josaphat F, Fadlan A. Molecular Docking of Acetylacetone-Based Oxindole Against Indoleamine 2, 3-Dioxygenase: Study of Energy Minimization. Walisongo J Chem. 2023; 6(2):149-157. doi:10.21580/wjc.v6i2.17638
Marseti SW, Hermanto FE, Widyananda MH, Rosyadah N, Kamila FS, Annisa Y, Dwijayanti DR, Ulfa SM, Widodo N. Pharmacological potential of Clinacanthus nutans : integrating network pharmacology with experimental studies against lung cancer. J Biol Active Prod Nat. 2024; 14(3):343-358. doi:10.1080/22311866.2024.2367997
Odhar HA. Molecular docking and dynamics simulation of FDA approved drugs with the main protease from 2019 novel coronavirus. Bioinformation. 2020; 16(3):236-244. doi:10.6026/97320630016236
Abdullah A, Putri NTM, Rosyadah N, Ramadhani P, Putri SAK, Widyananda MH, Kurniawan N, Fatchiyah F. The Study of flavonoid in Apium graveolens L. as a Kirsten Rat Sarcoma Protein Inhibitor in Colorectal Cancer based on in silico Study. Biotropika. 2023; 11(2):115-124. doi:10.21776/ub.biotropika.2023.011.02.07
Masuda T, Jitoe A, Nakatani N. Structure of Aerugidiol, a New Bridge-head Oxygenated Guaiane Sesquiterpene. Chem Lett. 1991; 20(9):1625-1628. doi:10.1246/cl.1991.1625
Sirat HM, Jamil S, Hussain J. Essential Oil of Curcuma aeruginosa Roxb. from Malaysia. J Essent Oil Res. 1998; 10(4):453-458. doi:10.1080/10412905.1998.9700942
Otsuka H, Minh Giang P, Tong Son P, Matsunami K. New Sesquiterpenoids from Curcuma aeruginosa Roxb. Heterocycles. 2007; 74(1):977. doi:10.3987/COM-07-S(W)42
Suharsanti R, Astuti P, Yuniarti N, Wahyuono S. Review of Isolation Methods, Chemical Composition and Biological Activities of Curcuma aeruginosa Roxb Rizhome. Trop J Nat Prod Res. 2022; 6(10):1538-1546. doi:10.26538/tjnpr/v6i10.1
Boutsada P, Giang VH, Linh TM, Mai NC, Cham PT, Hanh TTH, Phonenavong K, Sengchanh S, Cuong NX, Lien LQ, Ban NK.. Sesquiterpenoids from the rhizomes of Curcuma aeruginosa. Vietnam J Chem. 2018; 56(6):721-725. doi:10.1002/vjch.201800077