Exploring the In Vitro Anti-Inflammatory Effect and In Silico Toxicity Profile of Curcuma aeruginosa Roxb. Extract in RAW 264.7 Macrophages

Main Article Content

Defiona RNAzerlyn
Dinia R Dwijayanti
Masruri Masruri
Nashi Widodo

Abstract

Chronic inflammation is implicated in numerous diseases, and targeting pro-inflammatory pathways is a promising therapeutic approach. Curcuma aeruginosa Roxb. known for its traditional medicinal uses, contains sesquiterpenes that may offer anti-inflammatory benefits. This study examines the anti-inflammatory properties of ethanol extract from C. aeruginosa Roxb. rhizome on nitric oxide (NO) production in LPS-stimulated RAW 264.7 macrophages using in vitro and in silico approaches. The in vitro analysis was conducted by treating RAW 264.7 cells with varying concentrations of the extract (15, 30, and 60 µg/mL), followed by NO measurement using the Griess assay to evaluate inhibition. The IC50 value of the extract was determined to be 29.03 ± 4.37 µg/mL. Notably, cell viability analysis using the WST-1 assay confirmed that these treatment concentrations did not induce toxicity in the cells. In the in silico analysis, 17 sesquiterpene compounds identified from the extract were screened for bioactivity and toxicity, then tested in molecular docking and molecular dynamics simulations with primary inflammatory proteins, including iNOS, IKKβ, ERK2, JNK1, and p38. Molecular docking and molecular dynamics results highlighted three key compounds, which were dehydrochromolaenin, pyrocurzerenone, and turmeronol B at exhibited strong binding affinities, particularly with iNOS, indicating stable interactions with significant anti-inflammatory potential. These findings suggest that C. aeruginosa rhizome extract effectively reduces NO production in vitro and demonstrates molecular interactions that inhibit inflammatory mediators in silico. This extract holds potential as a natural anti-inflammatory agent with a multifaceted mechanism of action against inflammatory signaling pathways. 

Downloads

Download data is not yet available.

Article Details

Section

Articles

Author Biography

Dinia R Dwijayanti, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang, 65145, Indonesia 

Research Center of Complementary Medicine and Functional Food, Universitas Brawijaya, Malang, 65145, Indonesia 

How to Cite

RNAzerlyn, D., Dwijayanti, D. R., Masruri, M., & Widodo, N. (2025). Exploring the In Vitro Anti-Inflammatory Effect and In Silico Toxicity Profile of Curcuma aeruginosa Roxb. Extract in RAW 264.7 Macrophages. Tropical Journal of Natural Product Research (TJNPR), 9(5), 1964 – 1972. https://doi.org/10.26538/tjnpr/v9i5.12

References

​​Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018; 9(6):7204-7218. doi:10.18632/oncotarget.23208

​Jogpal V, Sanduja M, Dutt R, Garg V, Tinku. Advancement of nanomedicines in chronic inflammatory disorders. Inflammopharmacology. 2022; 30(2):355-368. doi:10.1007/s10787-022-00927-x

​Park YJ, Cheon SY, Lee DS, Cominguez DC, Zhang Z, Lee S, An HJ. Anti-Inflammatory and Antioxidant Effects of Carpesium cernuum L. Methanolic Extract in LPS-Stimulated RAW 264.7 Macrophages. Mediators Inflamm. 2020; 2020. doi:10.1155/2020/3164239

​Tucureanu MM, Rebleanu D, Constantinescu CA, Deleanu M, Voicu G, Butoi E, Calin M, Manduteanu I. Lipopolysaccharide-induced inflammation in monocytes/macrophages is blocked by liposomal delivery of Gi-protein inhibitor. Int J Nanomedicine. 2017; 13:63-76. doi:10.2147/IJN.S150918

​García-Aranda MI, Gonzalez-Padilla JE, Gómez-Castro CZ, Gómez-Gómez YM, Rosales-Hernández MC, García-Báez EV, Franco-Hernández MO, Castrejón-Flores JL, Padilla-Martínez II. Anti-inflammatory effect and inhibition of nitric oxide production by targeting COXs and iNOS enzymes with the 1, 2-diphenylbenzimidazole pharmacophore. Bioorg Med Chem. 2020; 28(9):115427. doi:10.1016/j.bmc.2020.115427

​Teslim OA. Side Effects of Non-Steroidal Anti-Inflammatory Drugs: The Experience of Patients with Musculoskeletal Disorders. Am J Health Res. 2014; 2(4):106. doi:10.11648/j.ajhr.20140204.11

​Thomas Td, Jose S. Comparative phytochemical and anti-bacterial studies of two indigenous medicinal plants Curcuma caesia Roxb. and Curcuma aeruginosa Roxb. Int J Green Pharm. 2014; 8(1):65. doi:10.4103/0973-8258.126828

​Siahaan S, Aryastami NK. Policy Study on the Development of Medicinal Plants in Indonesia. Health Research and Development Media. 2018; 28(3):157-166. doi:10.22435/mpk.v28i3.119

​Sari AP, Supratman U. Phytochemistry and Biological Activities of Curcuma aeruginosa (Roxb.). Indones J Chem. 2022; 22(1):576. doi:10.22146/ijc.70101

​Djati MS, Christina YI, Rifa’i M. The combination of Elephantopus scaber and Sauropus androgynus promotes erythroid lineages and modulates follicle-stimulating hormone and luteinizing hormone levels in pregnant mice infected with Escherichia coli. Vet World. 2021:1398-1404. doi:10.14202/vetworld.2021.1398-1404

​Dwijayanti DR, Widyananda MH, Hermanto FE, Soewondo A, Afiyanti M, Widodo N. Revealing the anti-inflammatory activity of Euphorbia hirta extract: transcriptomic and nitric oxide production analysis in LPS-Induced RAW 264.7 cells. Food Agric Immunol. 2024; 35(1). doi:10.1080/09540105.2024.2351360

​Widyananda MH, Wicaksono ST, Rahmawati K, Puspitarini S, Ulfa SM, Jatmiko YD, Masruri M, Widodo N. A Potential Anticancer Mechanism of Finger Root (Boesenbergia rotunda) Extracts against a Breast Cancer Cell Line. Scientifica (Cairo). 2022; 2022:1-17. doi:10.1155/2022/9130252

​Widyananda MH, Muflikhah L, Ulfa SM, Widodo N. Unveiling the antibreast cancer mechanism of Euphorbia hirta ethanol extract: computational and experimental study. J Biol Act Prod Nat. 2024; 14(3):359-382. doi:10.1080/22311866.2024.2361684

​Lind M, Hayes A, Caprnda M, Petrovic D, Rodrigo L, Kruzliak P, Zulli A. Inducible nitric oxide synthase: Good or bad? Biomed Pharmacother. 2017; 93:370-375. doi:10.1016/j.biopha.2017.06.036

​Andrina S, Churiyah C, Nuralih N. Anti-Inflammatory Effect of Ethanolic Extract of Curcuma aeruginosa Roxb Rhizome, Morinda Citrifolia Fruit and Apium graveolens Leaf on Lipopplysaccharide-induce RAW 264.7 Cell Lines. Indones J Cancer Chemoprevent. 2017; 6(3):84. doi:10.14499/indonesianjcanchemoprev6iss3pp84-88

​Dewi IP, Dachriyanus, Aldi Y, Ismail NH, Hefni D, Susanti M, Syafri S, Wahyuni FS. Curcuma aeruginosa Roxb. Extract Inhibits the Production of Proinflammatory Cytokines on RAW 264.7 Macrophages. Int J Appl Pharm. 2024:41-44. doi:10.22159/ijap.2024.v16s1.08

​Iqbal M, Kurniawan RV, Nurfani HDW, Roestamadji RI, Luthfi M, Setyowati D, Setijanto RD, Surboyo MDC. Molecular docking analysis of major active compounds of pomegranate peel extract (Punica granatum L.) in inhibiting cyclooxygenase enzyme. World J Adv Res Rev 2023; 20(3):1824-1842. doi:10.30574/wjarr.2023.20.3.2653

​Gamble C, McIntosh K, Scott R, Ho KH, Plevin R, Paul A. Inhibitory kappa B kinases as targets for pharmacological regulation. Br J Pharmacol. 2012; 165(4):802-819. doi:10.1111/j.1476-5381.2011.01608.x

​Hegazy MEF, Hamed AR, Mohamed TA, Debbab A, Nakamura S, Matsuda H, Paré PW. Anti-inflammatory sesquiterpenes from the medicinal herb Tanacetum sinaicum. RSC Adv. 2015; 5(56):44895-44901. doi:10.1039/C5RA07511D

​Wang Y, Jia Q, Zhang Y, Wei J, Liu P. Amygdalin Attenuates Atherosclerosis and Plays an Anti-Inflammatory Role in ApoE Knock-Out Mice and Bone Marrow-Derived Macrophages. Front Pharmacol. 2020; 11. doi:10.3389/fphar.2020.590929

​Josaphat F, Fadlan A. Molecular Docking of Acetylacetone-Based Oxindole Against Indoleamine 2, 3-Dioxygenase: Study of Energy Minimization. Walisongo J Chem. 2023; 6(2):149-157. doi:10.21580/wjc.v6i2.17638

​Marseti SW, Hermanto FE, Widyananda MH, Rosyadah N, Kamila FS, Annisa Y, Dwijayanti DR, Ulfa SM, Widodo N. Pharmacological potential of Clinacanthus nutans : integrating network pharmacology with experimental studies against lung cancer. J Biol Active Prod Nat. 2024; 14(3):343-358. doi:10.1080/22311866.2024.2367997

​Odhar HA. Molecular docking and dynamics simulation of FDA approved drugs with the main protease from 2019 novel coronavirus. Bioinformation. 2020; 16(3):236-244. doi:10.6026/97320630016236

​Abdullah A, Putri NTM, Rosyadah N, Ramadhani P, Putri SAK, Widyananda MH, Kurniawan N, Fatchiyah F. The Study of flavonoid in Apium graveolens L. as a Kirsten Rat Sarcoma Protein Inhibitor in Colorectal Cancer based on in silico Study. Biotropika. 2023; 11(2):115-124. doi:10.21776/ub.biotropika.2023.011.02.07

​Masuda T, Jitoe A, Nakatani N. Structure of Aerugidiol, a New Bridge-head Oxygenated Guaiane Sesquiterpene. Chem Lett. 1991; 20(9):1625-1628. doi:10.1246/cl.1991.1625

​Sirat HM, Jamil S, Hussain J. Essential Oil of Curcuma aeruginosa Roxb. from Malaysia. J Essent Oil Res. 1998; 10(4):453-458. doi:10.1080/10412905.1998.9700942

​Otsuka H, Minh Giang P, Tong Son P, Matsunami K. New Sesquiterpenoids from Curcuma aeruginosa Roxb. Heterocycles. 2007; 74(1):977. doi:10.3987/COM-07-S(W)42

​Suharsanti R, Astuti P, Yuniarti N, Wahyuono S. Review of Isolation Methods, Chemical Composition and Biological Activities of Curcuma aeruginosa Roxb Rizhome. Trop J Nat Prod Res. 2022; 6(10):1538-1546. doi:10.26538/tjnpr/v6i10.1

​Boutsada P, Giang VH, Linh TM, Mai NC, Cham PT, Hanh TTH, Phonenavong K, Sengchanh S, Cuong NX, Lien LQ, Ban NK.. Sesquiterpenoids from the rhizomes of Curcuma aeruginosa. Vietnam J Chem. 2018; 56(6):721-725. doi:10.1002/vjch.201800077