Antirheumatic Potential of Araucaria-Derived Biflavonoids through In Silico Docking to 20S Proteasome

Main Article Content

Luthfan Irfana
Chinesia P. Suryawan
Budi Arifin
Suminar S. Achmadi
Setyanto T. Wahyudi
Purwantiningsih Sugita

Abstract

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by joint inflammation, often treated with drugs targeting a single pathway. Biflavonoids, such as isoginkgetin, have been reported to modulate multiple inflammatory pathways by inhibiting the 20S proteasome. This study employed molecular docking to evaluate 23 biflavonoid ligands from the Araucaria genus as potential proteasome inhibitors (PDB ID: 5LE5 and 5LF7). The results showed that ochnaflavone (BF23) exhibited the best binding affinity (-11.48 and -10.47 kcal/mol) but displayed unfavorable pharmacokinetic and toxicity profiles. Meanwhile, 7′′-O-methylamentoflavone (BF11) variant 2 (-10.64 kcal/mol) and 7,7′′-di-O-methylamentoflavone (BF12) variant 4 (-10.49 kcal/mol) were identified as promising inhibitors for 5LE5, while BF11 variant 3 (-10.00 kcal/mol), BF12 variant 2 (-9.75 kcal/mol), 7,4′-di-O-methylamentoflavone (BF14) variant 5 (9.82 kcal/mol), and 7,4′,7′′-tri-O-methylamentoflavone (BF9) variant 2 (-9.66 kcal/mol) exhibited strong binding to 5LF7. The presence of methoxy (-OCH3) groups at the 7 and/or 7′′ positions in amentoflavone derivatives are predicted to significantly influence their inhibitory activity. BF23 variants 2 and 5 occupied distinct active sites, with 5LE5 ligands predominantly interacting with the β1 subunit (L chain) and 5LF7 ligands engaging the β5 subunit (K chain). These findings suggest that biflavonoids from Araucaria could serve as promising candidates for anti-RA drug development, targeting both β1 and β5 proteasome subunits.

Downloads

Download data is not yet available.

Article Details

Section

Articles

Author Biography

Purwantiningsih Sugita, Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Jl. Tanjung IPB University, Dramaga, Bogor 16680, Indonesia

Tel.: +62-818-686-194

How to Cite

Irfana, L., Suryawan, C. P., Arifin, B., Achmadi, S. S., Wahyudi, S. T., & Sugita, P. (2025). Antirheumatic Potential of Araucaria-Derived Biflavonoids through In Silico Docking to 20S Proteasome. Tropical Journal of Natural Product Research (TJNPR), 9(5), 2043 – 2053. https://doi.org/10.26538/tjnpr/v9i5.24

References

1. Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, Kavanaugh A, McInnes IB, Solomon DH, Strand V, Yamamoto K. Rheumatoid arthritis. Nat. Rev. Dis. Primers. 2018; 4(1):1–23. DOI: 10.1038/nrdp.2018.1

2. Fan R, Pan T, Zhu AL, Zhang MH. Anti‐inflammatory and anti‐arthritic properties of naringenin via attenuation of NF‐κB and activation of the heme oxygenase ﴾HO﴿‐1/related factor 2 pathway. Pharmacol. Rep. 2017; 69(5):1021–1029. DOI: 10.1016/j.pharep.2017.03.020

3. Chen Y, Wang Y, Liu M, Zhou B, Yang G. Diosmetin exhibits anti-proliferative and anti-inflammatory effects on TNF-α-stimulated human rheumatoid arthritis fibroblast-like synoviocytes through regulating the Akt and NF-κB signaling pathways. Phytother. Res. 2020; 34(6):1310–9. DOI: 10.1002/ptr.6596

4. Fonseca LJSD, Nunes-Souza V, Goulart MOF, Rabelo LA. Oxidative Stress in Rheumatoid Arthritis: What the Future Might Hold regarding Novel Biomarkers and Add-On Therapies. Oxid. Med. Cell. Longev. 2019; 1:1–17. DOI: 10.1155/2019/7536805

5. Liu S, Ma H, Zhang H, Deng C, Xin P. Recent advances on signaling pathways and their inhibitors in rheumatoid arthritis. Clin. Immunol. 2021; 230:108793. DOI: 10.1016/j.clim.2021.108793

6. Mahalanobish S, Saha S, Dutta S, Ghosh S, Sil PC. Anti-inflammatory efficacy of some potentially bioactive natural products against rheumatoid arthritis. In: Brahmachari G, editor. In Natural Product Discovery-Discovery and Development of Anti-inflammatory Agents from Natural Products. Elsevier; 2019. 61–100. DOI: 10.1016/B978-0-12-816992-6.00003-6

7. Verbrugge EE, Scheper RJ, Lems WF, de Gruijl TD, Jansen G. Proteasome inhibitors as experimental therapeutics of autoimmune diseases. Arthritis Res. Ther. 2015; 17(1):1–10. DOI: 10.1186/s13075-015-0529-1

8. Wang L, Liu L, Hong X, Liu D, Cheng Z. Delanzomib, a novel proteasome inhibitor, combined with adalimumab drastically ameliorates collagen-induced arthritis in rats by improving and prolonging the anti-TNF-α effect of adalimumab. Front. Pharmacol. 2021; 12(1):1–12. DOI: 10.3389/fphar.2021.782385

9. Sanagala VM, Porika R, Edupuganti S, Dokuparthi SK, Biman KK. Molecular Docking Evaluation of Phytochemicals in Fruits of Terminalia pallida Brandis: Implication on Immunomodulation. Trop. J. Nat. Prod. Res. 2024; 8(5):7106–7113. DOI: 10.26538/tjnpr/v8i5.9%20

10. Alkadi KAA, Ashraf K, Adam A, Shah SAA, Taha M, Hasan MH, John C, Salleh RM, Ahmad W. In vitro cytotoxicity and anti-inflammatory cytokinine activity study of three isolated novel compounds of Prismatomeris glabra. J. Pharm. Bioallied Sci. 2021; 13(1):16–22. DOI: 10.4103/jpbs.JPBS_279_19

11. Ren Y, Lantvit DD, De Blanco EJC, Kardono LBS, Riswan S, Chai H, Cottrell CE, Farnsworth NR, Swanson SM, Ding Y, Li XC, Marais JPJ, Ferreira D, Kinghorn AD. Proteasome-inhibitory and cytotoxic constituents of Garcinia lateriflora: Absolute configuration of caged xanthones. Tetrahedron. 2010; 66(29):5311–5320. DOI: 10.1016/j.tet.2010.05.010

12. Tsalikis J, Abdel-Nour M, Farahvash A, Sorbara MT, Poon S, Philpott DJ, Girardin SE. Isoginkgetin, a natural biflavonoid proteasome inhibitor, sensitizes cancer cells to apoptosis via disruption of lysosomal homeostasis and impaired protein clearance. Mol. Cell. Biol. 2019; 39(10):1–17. DOI: 10.1128/MCB.00489-18

13. Zhou HF, Xie C, Jian R, Kang J, Li Y, Zhuang CL, Yang F, Zhang L Le, Lai L, Wu T, Wu X. Biflavonoids from caper (Capparis spinosa L.) fruits and their effects in inhibiting NF-kappa B activation. J. Agric. Food. Chem. 2011; 59(7):3060–3065. DOI: 10.1021/jf105017j

14. Sugita P, Agusta DD, Dianhar H, Suparto IH, Kurniawanti K, Rahayu DUC, Irfana L. The cytotoxicity and SAR analysis of biflavonoids isolated from Araucaria hunsteinii K. Schum. leaves against MCF-7 and HeLa cancer cells. J. Appl. Pharm. Sci. 2023; 13(10):199–209. DOI: 10.7324/JAPS.2023.145302

15. Aslam M, Choudhary BA, Uzair M, Ijaz AS. Phytochemistry of aerial parts of Araucaria columnaris. J. Appl. Pharm. 2014; 6(1):114–120. DOI: 10.21065/19204159.6.114

16. Frezza C, Venditti A, De Vita D, Toniolo C, Franceschin M, Ventrone A, Tomassini L, Foddai S, Guiso M, Nicoletti M, Bianco A, Serafini M. Phytochemistry, chemotaxonomy, and biological activities of the Araucariaceae family—a review. Plants. 2020; 9(1):1–73. DOI: 10.3390/plants9070888

17. Shaik NA, Hakeem KR, Banaganapalli B, Elango R, editors. Vol. II, Essentials of Bioinformatics Volume II: In Silico Life Sciences: Medicine. Cham: Springer International; 2019. 309. DOI:10.1007/978-3-030-18375-2

18. Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021; 61(8):3891–3898. DOI: 10.1021/acs.jcim.1c00203

19. Gontijo VS, dos Santos MH, Viegas Jr. C. Biological and chemical aspects of natural biflavonoids from plants: A brief review. Mini-Rev. Med. Chem. 2016; 17(10):834-862. DOI: 10.2174/1389557517666161104130026

20. Sugita P, Handayani SDP, Agusta DD, Ambarsari L, Dianhar H, Rahayu DUC. Combined in-silico and in-vitro approaches to evaluate the inhibitory the potential of biflavonoids from Araucaria plants against α-glucosidase as target protein. Rasayan J. Chem. 2023; 16(1):361–375. DOI: 10.31788/RJC.2023.1618147

21. Ropp PJ, Spiegel JO, Walker JL, Green H, Morales GA, Milliken KA, Ringe JJ, Durrant JD. GypSUm-DL: An open-source program for preparing small-molecule libraries for structure-based virtual screening. J. Cheminform. 2019; 11(1):1–13. DOI: 10.1186/s13321-019-0358-3

22. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J. Cheminform. 2011; 3(33):1–14. DOI: 10.1186/1758-2946-3-33

23. Shapovalov M V., Dunbrack RL. A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure. 2011; 19(6):844–858. DOI: 10.1016/j.str.2011.03.019

24. Morris GM, Lim-Wilby M. Molecular docking. Methods Mol. Biol. 2008; 443:365–382. DOI: 10.1007/978-1-59745-177-2_19

25. Schaller D, Šribar D, Noonan T, Deng L, Nguyen TN, Pach S, Machalz D, Bermudez M, Wolber G. Next generation 3D pharmacophore modeling. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2020; 10(4):1–20. DOI: 10.1002/wcms.1468

26. Gore S, Sanz García E, Hendrickx PMS, Gutmanas A, Westbrook JD, Yang H, Feng Z, Baskaran K, Berrisford J, Hudson B, Ikegawa Y, Kovayashi N, Lawson C, Mading S, Mak L, Mukhopadhyay A, Oldfield T, Patwardhan A, Peisach E, Sahni G, Sekharan M, Sen S, Sao S, Smart O, Ulrich E, Yamashita R, Quesada M, Young J, Nakamura H, Markley J, Berman H, Burley S, Velankar S, Kleywegt G. Validation of Structures in the Protein Data Bank. Structure. 2017; 25(12):1916–1927. DOI: 10.1016/j.str.2017.10.009

27. Feig M. Computational protein structure refinement: Almost there, yet still so far to go. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2017;7(3):1–16. DOI: 10.1002/wcms.1307

28. Laskowski RA, MacArthur MW, Thornton JM. PROCHECK: Validation of Protein Structure Coordinates. In: Arnold E, Himmel DM, Rossmann MG, editors. International Tables for Crystallography. Willey; 2012. Vol. F, ch. 21.4, 684–687. DOI: 10.1107/97809553602060000882

29. Wlodawer A. Stereochemistry and Validation of Macromolecular Structures. In: Wlodawer A, Dauter Z, Jaskolski M, editors. Protein Crystallography. 1st ed. New York: Humana; 2017. 595–610. DOI: 10.1007/978-1-4939-7000-1

30. Shirley M. Ixazomib: First global approval. Drugs. 2016; 76(3):405–11. DOI: 10.1007/s40265-016-0548-5

31. Kwatra B, Bhattacharya B, Khokhawat T, Raphael Jes A, Bhati M, Ahuja S. Drug Repurposing: In Silico Modeling of Mucor Mycosis. J. Sci. Res. Rep. 2021; 27(10):53–61. DOI: 10.9734/jsrr/2021/v27i1030449

32. Elokely KM, Doerksen RJ. Docking challenge: Protein sampling and molecular docking performance. J. Chem. Inf. Model. 2013; 53(8):1934–1945. DOI: 10.1021/ci400040d

33. Lu Z, Zhao Z, Fu B. Efficient protein alignment algorithm for protein search. BMC Bioinform. 2010; 11(SUPPLL.1):1–10. DOI: 10.1186/1471-2105-11-S1-S34

34. Muz B, Ghazarian RN, Ou M, Luderer MJ, Kusdono HD, Azab AK. Spotlight on ixazomib: potential in the treatment of multiple myeloma. Drug Des. Devel. Ther. 2016; 10:217–26. DOI: 10.2147/DDDT.S93602

35. Schrader J, Henneberg F, Mata RA, Tittmann K, Schneider TR, Stark H, Bourenkov G, Hari A. The inhibition mechanism of human 20S proteasomes enables next-generation inhibitor design. Struct. Biol. 2016; 353(6299):1–6. DOI: 10.1126/science.aaf8993

36. Feinstein WP, Brylinski M. Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets. J. Cheminform. 2015; 7(18):1–10. DOI: 10.1186/s13321-015-0067-5

37. Lohning AE, Levonis SM, Williams-Noonan B, Schweiker SS. A Practical Guide to Molecular Docking and Homology Modelling for Medicinal Chemists. Curr. Top. Med. Chem. 2017;17(18). DOI: 10.2174/1568026617666170130110827

38. Ahluwalia VK. Stereochemistry of Organic Compounds. Springer International Publishing; 2022. DOI: 10.1007/978-3-030-84961-0

39. Zask A, Murphy J, Ellestad GA. Biological stereoselectivity of atropisomeric natural products and drugs. Chirality. 2013; 25:265–274. DOI: 10.1002/chir.22145

40. Aykul S, Martinez-Hackert E. Determination of half-maximal inhibitory concentration using biosensor-based protein interaction analysis. Anal. Biochem. 2016; 508:97–103. DOI: 10.1016/j.ab.2016.06.025

41. Schön A, Madani N, Smith AB, Lalonde JM, Freire E. Some Binding-Related Drug Properties are Dependent on Thermodynamic Signature. Chem. Biol. Drug. Des. 2011; 77(3):161–165. DOI: 10.1111/j.1747-0285.2010.01075.x

42. Burgoyne NJ, Jackson RM. Predicting protein interaction sites: Binding hot-spots in protein-protein and protein-ligand interfaces. Bioinformatics. 2006; 22(11):1335–1342. DOI: 10.1093/bioinformatics/btl079

43. Ozdal T, Capanoglu E, Altay F. A review on protein-phenolic interactions and associated changes. Food. Res. Int. 2013; 51(2):954–970. DOI: 10.1016/j.foodres.2013.02.009

44. Bordenave N, Hamaker BR, Ferruzzi MG. Nature and consequences of non-covalent interactions between flavonoids and macronutrients in foods. Food. Funct. 2014; 5(1):18–34. DOI: 10.1039/c3fo60263j

45. Uranga J, Hasecke L, Proppe J, Fingerhut J, Mata RA. Theoretical studies of the acid-base equilibria in a model active site of the human 20S proteasome. J. Chem. Inf. Model. 2021; 61(4):1942–1953. DOI: 10.1021/acs.jcim.0c01459

46. Dunn MF. Protein–Ligand Interactions: General Description. Encyclopedia of Life Sciences. 2010; 1–12. DOI: 10.1002/9780470015902.a0001340.pub2

47. Patil R, Das S, Stanley A, Yadav L, Sudhakar A, Varma AK. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing [Internet]. Hannenhalli S, editor. Vol. 5, PLoS ONE. Public Library of Science (PLoS); 2010. p. e12029. DOI: 10.1371/journal.pone.0012029.

48. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Deliv. Rev. 2012; 64(SUPPL.):4–17. DOI: 10.1016/s0169-409x(00)00129-0

49. Wakefield AE, Bajusz D, Kozakov D, Keserü GM, Vajda S. Conservation of allosteric ligand binding sites in g-protein coupled receptors. J. Chem. Inf. Model. 2022;62(20):4937–54. DOI: 10.1021/acs.jcim.2c00209