Effect of a nature-derived combination of Ananas comosus and Bambusa bambos (L.) in hyperlipidemic experimental animals

Main Article Content

Van Anh T. Pham
Phong Pham
Tung Tran
Hien Dang
Quang Trinh
Duong Dau

Abstract

Hyperlipidemia is an independent modifiable risk factor of cardiovascular diseases which remains the leading cause of disease burden for healthcare systems worldwide. Traditional medicine formulas have a long history of use in Asia for hyperlipidemia treatment. This study aimed to evaluate the potential efficacy of a herbal combination of Ananas comosus and Bambusa bambos (L.), named "Cao dua tre Lao nha que" (CDT), on hyperlipidemic animal models of two pathways. In poloxamer-407 (P-407)-induced model, mice were pre-treated with CDT before intraperitoneal injection of P-407; in the dietary model, rats were orally administered a cholesterol mixture and CDT for 4 consecutive weeks. Results indicated that CDT (0.6 and 1.2 g/kg b.w.) significantly reduced total cholesterol (TC) (from 4.11±0.95 to 3.05±0.60 and 2.93±0.67 mmol/L, respectively) and triglycerides (TG) (from 1.40±0.27 to 1.02±0.20 and 1.13±0.31 mmol/L) in the dietary model; in P-407-induced model, CDT significantly reduced TG (from 5.8±1.52 to 4.84±0.95 and 4.76±0.55 mmol/L, respectively) and TC (from 6.09±1.36 to 4.42±1.14 and 4.53±1.15 mmol/L) compared to untreated hyperlipidemic controls. CDT improved the serum lactate dehydrogenase (LDH) levels (from 748.50±120.79 to 475.30±109.53 and 534.30±127.74 U/L) and ameliorated the elevated serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the cholesterol-induced hyperlipidemic rats, suggesting hepatoprotective effects. No dose-dependent relationship was observed. In conclusion, CDT demonstrated efficacy in hyperlipidemia treatment by improving lipid profiles and offering hepatoprotection, highlighting its potential to serve as a promising adjunctive therapy for hyperlipidemia and related disorders. 

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Pham, V. A. T., Pham, P., Tran, T., Dang, H., Trinh, Q., & Dau, D. (2025). Effect of a nature-derived combination of Ananas comosus and Bambusa bambos (L.) in hyperlipidemic experimental animals . Tropical Journal of Natural Product Research (TJNPR), 9(5), 2323-2328. https://doi.org/10.26538/tjnpr/v9i5.61

References

Lira FS, Rosa Neto JC, Antunes BMM, Fernandes RA. The relationship between inflammation, dyslipidemia and physical exercise: from the epidemiological to molecular approach. Curr Diabetes Rev. 2014;10:391-396. doi: 10.2174/1573399810666141122210135

Ryan A, Heath S, Cook P. Dyslipidaemia and cardiovascular risk. BMJ. 2018;360:k835. doi: 10.1136/bmj.k835

Berberich AJ, Hegele RA. A Modern Approach to Dyslipidemia. Endocr Rev. 2021;43:611-653. doi: 10.1210/endrev/bnab037

Pham D, Hung N, Khai P, Vuong D, Chinh P, Duong P, Nhung N. Prevalence of Dyslipidemia and Associated Factors among Adults in Rural Vietnam. Syst Rev Pharm. 2020;11:185-191. doi: 10.5530/srp.2020.1.25

Liu T, Zhao D, Qi Y. Global Trends in the Epidemiology and Management of Dyslipidemia. J Clin Med. 2022;11:6377. doi: 10.3390/jcm11216377

Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, Chapman MJ, Guy Backer GD, Delgado V, Ference BA, Graham IM, Halliday A, Landmesser U, Mihaylova B, Pedersen TR, Riccardi G, Richter DJ, Sabatine MS, Taskinen MR, Tokgozoglu L, Wiklund O. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41:111-188. doi: 10.1093/eurheartj/ehz455

Soppert J, Lehrke M, Marx N, Jankowski J, Noels H. Lipoproteins and lipids in cardiovascular disease: from mechanistic insights to therapeutic targeting. Adv Drug Deliv Rev. 2020;159:4-33. doi: 10.1016/j.addr.2020.07.019

Dhande S, Kaikini A, Patil KA, Kadam V. Antihyperlipidemic activity of Bambusa bambos (Druce.) and Swertia chirata (Buch-Ham) in cholesterol suspension induced hypercholesterolemia in rats. Int J Pharm Pharm Sci. 2014;6:607-610.

Kaikini A, Dhande S, Kadam V. Antihyperlipidemic activity of methanolic extract of leaves of bambusa bambos druce against poloxamer-407 induced hyperlipidemia in rats. 2015;7:393-398.

Indahsari NK, Wibisono P. Pineapple (Ananas comocus) Niacin Extract’s Effect on Total Cholesterol and Triglyceride Levels in Hypercholesterolemia Wistar Rats. Hang Tuah Med J. 2023;20:223-234. doi: 10.30649/htmj.v20i2.345

Xie W, Wang W, Su H, Xing D, Cai G, Du L. Hypolipidemic mechanisms of Ananas comosus L. leaves in mice: different from fibrates but similar to statins. J Pharmacol Sci. 2007;103:267-274. doi: 10.1254/jphs.fp0061244

Okokon JE, Opara KN, Udobang JA, Bankehde HK. In Vivo Antiplasmodial and Antipyretic Activities of Ethanol Leaf Extract of Ananas comosus (L.) Merr: doi.org/10.26538/tjnpr/v3i7.5. Trop J Nat Prod Res. 2019;3:240-245.

Rustini R, Aisy DR, Putra PP, Andayani R, Dwinatrana K. Antibacterial Activity of Endophytic Bacterial Extracts Isolated from Pineapple Peel (Ananas comosus L.): http://www.doi.org/10.26538/tjnpr/v7i7.8. Trop J Nat Prod Res. 2023;7:3320-3324.

Vietnamese Ministry of Health. Vietnamese Pharmacopeia. Fifth edition. Ha Noi: Medical Publishing House Co., Ltd.; 2017.

Phuong P, Binh P, Minh D, Hien T, Thong N, Hien D, Van Anh P. Effects of Hamo NK hard capsule on serum lipid profiles in dyslipidemia experimental animals. Tạp Chí Nghiên Cứu Học. 2021;141:10-18. doi: 10.52852/tcncyh.v141i5.217

Ba Tuyen P, Huyen TT, Hang DTT, Thi Van Anh P. A Novel Herbal Medicine for Dyslipidemia: Assessments in Experimental Models. Evid-Based Complement Altern Med ECAM. 2021;2021:5529744. doi: 10.1155/2021/5529744

Amiri Behzadi A, Kalalian-Moghaddam H, Ahmadi AH. Effects of Urtica dioica supplementation on blood lipids, hepatic enzymes and nitric oxide levels in type 2 diabetic patients: A double blind, randomized clinical trial. Avicenna J Phytomedicine. 2016;6:686-695.

Nguyen Phuong Thanh. Experimental Animal Research On The Subchronic Toxicity and Antihyperlipidemic Effect of Monacholes. Hanoi medical University; 2011.

Pham VA, Vu VH, Nguyen TT, Dau TD. Experimental Animal Research On The Subchronic Toxicity Of “Dua tre Lao nha que” Extract. Med. Res. J. 2024;177 E14:124-131.

Millar JS, Cromley DA, McCoy MG, Rader DJ, Billheimer JT. Determining hepatic triglyceride production in mice: comparison of poloxamer 407 with Triton WR-1339. J Lipid Res. 2005;46:2023-2028. doi: 10.1194/jlr.D500019-JLR200

Yadav S, Satapathy T, Roy A, Prasad P. Antihyperlipidemic potential of herbals. J Appl Pharm Res. 2014;2:07-17.

Han Q, Yeung SC, Ip MSM, Mak JCW. Dysregulation of cardiac lipid parameters in high-fat high-cholesterol diet-induced rat model. Lipids Health Dis. 2018;17:255. doi: 10.1186/s12944-018-0905-3

Abaku R, Anacletus FC, Onuoha SC, Nwauche KT, Ubhenin AE, Iwuanyanwu-Patrick KC. Hypolipidemic Potentials of Aqueous Leaf Extract of Cape Fig (Ficus capensis thunb) in High Fat Diet-Induced Hyperlipidemic Rats: doi.org/10.26538/tjnpr/v5i2.22. Trop J Nat Prod Res 2021;5:342-346.

Binh NTM, Ngan NH, Lan DTH, Hanh NH, Tuan NTH. Anti-hyperlipidemic Effect of Camellia hakodae Ninh Extract in an In Vivo Rat Model. Trop J Nat Prod Res. 2024;8:9199-9205. doi: 10.26538/tjnpr/v8i11.32

Hong S, Han K, Park JH, Yu SH, Lee CB, Kim DS. Higher Non-High-Density Lipoprotein Cholesterol Was Higher Associated With Cardiovascular Disease Comparing Higher LDL-C in Nine Years Follow Up: Cohort Study. J Lipid Atheroscler. 2023;12:164-174. doi: 10.12997/jla.2023.12.2.164

Meunier L, Larrey D. Drug-Induced Liver Injury: Biomarkers, Requirements, Candidates, and Validation. Front Pharmacol. 2019;10:1482. doi: 10.3389/fphar.2019.01482

Yaghchiyan M, Roshangar L, Farhangi MA, Mesgari-Abbasi M, Rafiei L, Shahabi P. Histologic, Metabolic, and Inflammatory Changes in the Liver of High-fat Diet-induced Obese Rats before and after Vitamin D Administration. Iran J Allergy Asthma Immunol. 2019;18:402-411. doi: 10.18502/ijaai.v18i4.1418

Salim HM, Kurnia LF, Bintarti TW, Handayani H, Shimabukuro M. Hepatoprotective Effects of Methanol Extract of Syzygium polyanthum L. Leaves (Salam) on High Fat Diet: doi.org/10.26538/tjnpr/v5i12.8. Trop J Nat Prod Res TJNPR. 2021;5:2092-2095.

Adegbola P, Aderibigbe I, Hammed W, Omotayo T. Antioxidant and anti-inflammatory medicinal plants have potential role in the treatment of cardiovascular disease: a review. Am J Cardiovasc Dis. 2017;7:19-32.

Zhu W, Ma Y, Guo W, Lu J, Li X, Wu J, Qin P, Zhu C, Zhang Q. Serum Level of Lactate Dehydrogenase is Associated with Cardiovascular Disease Risk as Determined by the Framingham Risk Score and Arterial Stiffness in a Health-Examined Population in China. Int J Gen Med. 2022;15:11-17. doi: 10.2147/IJGM.S337517

Morelli MB, Gambardella J, Castellanos V, Trimarco V, Santulli G. Vitamin C and Cardiovascular Disease: An Update. Antioxid Basel Switz. 2020;9:1227. doi: 10.3390/antiox9121227

Leon C, Wasan KM, Sachs-Barrable K, Johnston TP. Acute P-407 administration to mice causes hypercholesterolemia by inducing cholesterolgenesis and down-regulating low-density lipoprotein receptor expression. Pharm Res. 2006;23:1597-1607. doi: 10.1007/s11095-006-0276-8

Real J, Ascaso J. Lipid metabolism and classification of hyperlipaemias. Clin E Investig En Arterioscler Publicacion Of Soc Espanola Arterioscler. 2021;33 Suppl 1:3-9. doi: 10.1016/j.arteri.2020.12.008

Csonka C, Sárközy M, Pipicz M, Dux L, Csont T. Modulation of Hypercholesterolemia-Induced Oxidative/Nitrative Stress in the Heart. Oxid Med Cell Longev. 2016;2016:3863726. doi: 10.1155/2016/3863726

Seenak P, Kumphune S, Malakul W, Chotima R, Nernpermpisooth N. Pineapple consumption reduced cardiac oxidative stress and inflammation in high cholesterol diet-fed rats. Nutr Metab. 2021;18:36. doi: 10.1186/s12986-021-00566-z