Antibacterial Activity of Compounds Identified from the Active Fractions of Secang Wood (Caesalpinia sappan)

Main Article Content

Angriani Fusvita
Sernita
Firdayanti
Sri Aprilianti Idris
Agung Wibawa Mahatva Yodha
Muhammad Azdar Setiawan
Arfan
Wahyuni
Sahidin

Abstract

Sappan wood, also known as ‘Secang’ wood (Caesalpinia sappan), has traditionally been used as an antimicrobial agent. This study aimed to identify the chemical composition of sappan wood extract and evaluate its antibacterial activity. Sappan wood was extracted by maceration in methanol, followed by Vacuum Liquid Chromatography (VLC), resulting in five primary fractions (A – E) which were further analyzed using Liquid Chromatography-Mass Spectrometry (LC-MS/MS). The antibacterial activity of the fractions was evaluated against Escherichia coli and Staphylococcus aureus using the microdilution method. Molecular docking was performed by docking ligands identified in Fraction E against target proteins; β-ketoacyl-acyl carrier protein synthase (β-ketoacyl-ACP synthase) from E. coli (PDB ID: 1FJ4) and tyrosyl-tRNA synthetase (TyrRS) from S. aureus (PDB ID: 1JIJ) using AutoDock Tools v1.5.6.  LC-MS/MS analysis of the fractions identified various compounds belonging to the terpenoid, steroid, phenolic, and alkaloid groups of phytochemicals. All the fractions exhibited strong antibacterial activity against the test pathogenic bacterial (E. coli and S. aureus) with minimum inhibitory concentration (MIC) ranging from 2 – 8 µg/mL. Of all the fractions, Fraction E showed the highest antibacterial activity against the two organisms tested, with MIC values of 2 µg/mL against both organisms. Molecular docking study showed that the compound isosalsoline from Fraction E of sappan wood extract has the most promising antibacterial activity against S. aureus and E. coli. These findings indicate that sappan wood has the potential as alternative source of natural antibacterial compounds that can be used for the treatment of bacterial infections, especially those caused by antibiotics-resistant bacteria.

Downloads

Download data is not yet available.

Article Details

Section

Articles

Author Biography

Agung Wibawa Mahatva Yodha, Pharmacy Study Program, Politeknik Bina Husada Kendari, Indonesia

Tel: +6285241663731

How to Cite

Fusvita, A., Sernita, Firdayanti, Idris, S. A., Yodha, A. W. M., Setiawan, M. A., Arfan, Wahyuni, & Sahidin. (2025). Antibacterial Activity of Compounds Identified from the Active Fractions of Secang Wood (Caesalpinia sappan). Tropical Journal of Natural Product Research (TJNPR), 9(5), 2118-2124. https://doi.org/10.26538/tjnpr/v9i5.35

References

1. Ristori MV, Guarrasi V, Soda P, Petrosillo N, Gurrieri F, Longo UG, Ciccozzi M, Riva E, Angeletti S. Emerging Microorganisms and Infectious Diseases: One Health Approach for Health Shared Vision. Genes. 2024; 15(7):908. https://doi.org/10.3390/ GENES15070908.

2. Maitz J, Merlino J, Rizzo S, McKew G, Maitz P. Burn Wound Infections Micr obiome and Novel Approaches Using Therapeutic Microorganisms in Burn Wound Infection Control. Adv Drug Deliv Rev. 2023; 196:114769. https://doi.org/10.1016 /J.ADDR.2023.114769.

3. Linz MS, Mattappallil A, Finkel D, Parker D. Clinical Impact of Staphylococcus aureus Skin and Soft Tissue Infections. Antibiot. 2023; 12(3):557. https://doi.org/10.3390/ANTIBIOTICS 12030557.

4. Samreen, Ahmad I, Malak HA, Abulreesh HH. Environmental Antimicrobial Resistance and its Drivers: A Potential Threat to Public Health. J Glob Antimicrob Resist. 2021; 27:101–111. https://doi.org/10.1016/J.JGAR.2021.08.001.

5. Baran A, Kwiatkowska A, Potocki L. Antibiotics and Bacterial Resistance-A Short Story of an Endless Arms Race. Int J Mol Sci. 2023; 24(6):5777. https://doi.org/10.3390/IJMS24065777.

6. Ijoma KI and Ajiwe VIE. Jatropha tanjorensis a Flora of Southeast Nigeria: Isolation and Characterization of Naringenin and Validation of Bio-enhanced Synergistical Activity of α-Tocopherol Toward Clinical Isolates of Resistant Bacterial. Makara J Sci. 2022; 26(2):120–127. https://doi.org/10.7454/ MSS.V26I2.1362.

7. Ijoma KI and Ajiwe VIE. Antibacterial Activity of Phytochemicals in Ficus thonningii Leaves Extracts Against Some Selected Pathogenic Bacterial Prevalent in Sickle Cell Anemia. Jordan J Pharm Sci. 2023; 16(2):345–355. https://doi.org/10.35516/ JJPS.V16I2.344.

8. Vaou N, Stavropoulou E, Voidarou C, Tsigalou C, Bezirtzoglou E. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms 2021; 9(10):2041. https://doi.org/10.3390/ MICROORGANISMS9102041.

9. Alsheikh HM Al, Sultan I, Kumar V, Rather IA, Al‐sheikh H, Jan AT, Haq QMR. Plant-Based Phytochemicals as Possible Alternative to Antibiotics in Combating Bacterial Drug Resistance. Antibiot (Basel, Switzerland). 2020; 9(8):1–23. https://doi.org/10.3390/ANTIBIOTICS9080480.

10. Uddin TM, Chakraborty AJ, Khusro A, Zidan BRM, Mitra S, Emran T Bin, Dhama K, Ripon MKH, Gajdács M, Sahibzada MUK, Hossain MJ, Koirala N. Antibiotic resistance in microbes: History, Mechanisms, Therapeutic Strategies and Future Prospects. J Infect Public Health. 2021; 14(12):1750–1766. https://doi.org/10.1016/ J.JIPH.2021.10.020.

11. Halimah, Maryani Y, Krisyudhanti E, Wardoyo S. Effectiveness of Secang Wood (Caesalpinia sappan L.) in Inhibiting the Growth of Streptococcus mutans. Trop J Nat Prod Res. 2024; 8(6):7504–7508. https://doi.org/10.26538/TJNPR/V8I6.26.

12. Sari N and Inayah N. Utilization of Secang Wood Ethanol Extract (Caesalpinia sappan L.) as an Additional Ingredient Antiseptic Hand Cream Preparations Instead of Hand Sanitizer. Indones J Chem Res. 2023; 10(3):164–170. https://doi.org/10.30598// IJCR.2023.10-SAR.

13. Vij T, Anil PP, Shams R, Dash KK, Kalsi R, Pandey VK, Harsányi E, Kovács B, Shaikh AM. A Comprehensive Review on Bioactive Compounds Found in Caesalpinia sappan. Molecules. 2023; 28(17):6247. https://doi.org/10.3390/MOLECULES28176247.

14. Shan T, Ma Q, Guo K, Liu J, Li W, Wang F, Wu E. Xanthones from Mangosteen Extracts as Natural Chemopreventive Agents: Potential Anticancer Drugs. Curr Mol Med. 2011; 11(8):666–677. https://doi.org/10.2174/156652411797536679.

15. Niu Y, Wang S, Li C, Wang J, Liu Z, Kang W. Effective Compounds from Caesalpinia sappan L. on the Tyrosinase In Vitro and In Vivo. Nat Prod Commun. 2020; 15(4). https://doi.org/10.1177/1934578X20920055/ASSET/IMAGES/LARGE/10.1177_1934578X20920055-FIG4.JPEG.

16. Wu SQ, Otero M, Unger FM, Goldring MB, Phrutivorapongkul A, Chiari C, Kolb A, Viernstein H, Toegel S. Anti-inflammatory Activity of an Ethanolic Caesalpinia Sappan Extract in Human Chondrocytes and Macrophages. J Ethnopharmacol. 2011; 138(2):364–372. https://doi.org/10.1016/J.JEP.2011.09.011.

17. Du Toit K, Elgorashi EE, Malan SF, Drewes SE, Van Staden J, Crouch NR, Mulholland DA. Anti-inflammatory Activity and QSAR Studies of Compounds Isolated from Hyacinthaceae species and Tachiadenus longiflorus Griseb. (Gentianaceae). Bioorg Med Chem. 2005; 13(7):2561–2568. https://doi.org/10.1016/ J.BMC.2005.01.036.

18. Dapson RW and Bain CL. Brazilwood, Sappanwood, Brazilin and the Red Dye Brazilein: from Textile Dyeing and Folk Medicine to Biological Staining and Musical Instruments. Biotech Histochem. 2015; 90(6):401–423. https://doi.org/10.3109/ 10520295.2015.1021381.

19. Ngernnak C, Panyajai P, Anuchapreeda S, Wongkham W, Saiai A. Phytochemical and Cytotoxic Investigations of the Heartwood of Caesalpinia sappan Linn. Asian J Pharm Clin Res. 2018; 11(2):336–339. https://doi.org/10.22159/ AJPCR.2018.V11I2. 22903

20. Yodha AWM, Abdillah M, Indalifiany A, Elfahmi E, Sahidin S. Isolation and Identification of Antioxidant Compounds from Methanol Extract of Sappan Wood (Caesalpinia sappan). J Farm Sains Dan Prakt. 2022; 7(3):214–223. https://doi.org/10.31603/ PHARMACY.V7I3.6096.

21. Pattananandecha T, Apichai S, Julsrigival J, Ogata F, Kawasaki N, Saenjum C. Antibacterial Activity against Foodborne Pathogens and Inhibitory Effect on Anti-Inflammatory Mediators’ Production of Brazilin-Enriched Extract from Caesalpinia sappan Linn. Plants (Basel, Switzerland). 2022; 11(13):1698 https://doi.org/10.3390/ PLANTS11131698.

22. Srinivasan R, selvam GG, Karthik S, Mathivanan K, Baskaran R, Karthikeyan M, Gopi M, Govindasamy C. In Vitro Antimicrobial Activity of Caesalpinia sappan L. Asian Pac J Trop Biomed. 2012; 2(1):136–139. https://doi.org/10.1016/S2221-1691(12)60144-0.

23. Puttipan R, Wanachantararak P, Khongkhunthian S, Okonogi S. Effects of Caesalpinia sappan on Pathogenic Bacteria Causing Dental Caries and Gingivitis. Drug Discov Ther. 2017; 11(6):316–322. https://doi.org/10.5582/DDT.2017.01055.

24. Pharma D, Rina O, Ibrahim S, Dharma A, Utami Wirawati C. Screening for Active Agent to Anti-diarrhea by an Evaluation of Antimicrobial Activities from Three Fractions of Sappanwood (Caesalpinia sappan. L). Der Pharma Chemica. 2016; 8(19):114–117.

25. Hamsidi R, Karmilah, Daud NS, Malaka MH, Yodha AWM, Musdalipah, Arfan, Sahidin. Chemotaxonomy in the Etlingera Genus from Sulawesi, Indonesia: Design and molecular docking of antioxidant marker. Biodiversitas J Biol Divers. 2024; 25(2):449–457. https://doi.org/10.13057/BIODIV/D250202.

26. Sahidin I, Wahyuni, Rahim AR, Arba M, Yodha AWM, Rahmatika NS, Sabandar CW, Manggau MA, Khalid RM, Al Muqarrabun LMR, Rosandy AR, Chahyadi A, Hartati R, Elfahmi. Radical Scavenging and Antimicrobial Activities of Diarylheptanoids and Steroids from Etlingera calophrys Rhizome. Sustain Chem Pharm. 2022; 29:100767. https://doi.org/10.1016/J.SCP.2022.100767.

27. Price AC, Choi K-H, Heath RJ, Li Z, White SW, Rock CO. Inhibition of Ketoacyl-Acyl Carrier Protein Synthases by Thiolactomycin and Cerulenin: Structure and Mechanism. J Biol Chem. 2001; 276(9):6551–9655. https://doi.org/10.1074/ jbc.M007101200.

28. Qiu X, Janson CA, Smith WW, Green SM, McDevitt P, Johanson K, Carter P, Hibbs M, Lewis C, Chalker A, Fosberry A, Lalonde J, Berge J, Brown P, Houge-Frydrych CS V, Jarvest RL. Crystal structure of Staphylococcus aureus tyrosyl-tRNA synthetase in complex with a class of potent and specific inhibitors. Protein Sci. 2001; 10:2008–2016. https://doi.org/https://doi.org/ 10.1110/ ps.18001.

29. Ijoma IK, Okafor CE, Ajiwe VIE. Computational Studies of 5-methoxypsolaren as Potential Deoxyhemoglobin S Polymerization Inhibitor. Trop J Nat Prod Res. 2024; 8(10):8835–8841. https://doi.org/10.26538/TJNPR/V8I10.28.

30. Arfan A, Asnawi A, Aman LO. Marine Sponge Xestospongia sp.: A Promising Source for Tuberculosis Drug Development - Computational Insights into Mycobactin Biosynthesis Inhibition. Borneo J Pharm 2024; 7(1):40–50. https://doi.org/10.33084/ bjop.v7i1.5513.

31. Oleg T and Arthur JO. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J Comput Chem. 2010; 31(2):455–61. https://doi.org/10.1002/jcc.21334.

32. Arfan A, Rayani N, Ruslin R, Kasmawati H, Aman LO, Asnawi A. Rigid and Flexible Docking Study with ADME Evaluation of Hesperetin Analogues as LecB Inhibitors in Pseudomonas aeruginosa. Indones J Pharm Sci Technol. 2024; 6(2):15–25. https://doi.org/10.24198/IJPST.V6I2.52623.

33. Saha P, Rahman FI, Hussain F, Rahman SMA, Rahman MM. Antimicrobial Diterpenes: Recent Development from Natural Sources. Front Pharmacol. 2022; 12:820312 https://doi.org/10.3389/FPHAR.2021.820312.

34. Liu CJ, Yu ZY, Min YT, Zhang JW, Zhang J, Lu ZW, Yang JP, Wang YF. Synthesis, Structure, and Antibacterial Activities of Diterpenoid Isosteviol-Derived Alkenyl Ethers. Chem Nat Compd. 2022; 58:857–861. https://doi.org/10.1007/S10600-022-03816-5.

35. Moon K, Hwang S, Lee HJ, Jo E, Kim JN, Cha J. Identification of the Antibacterial Action Mechanism of Diterpenoids Through Transcriptome Profiling. Front Microbiol. 2022; 13:945023. https://doi.org/10.3389/FMICB.2022.945023.

36. Paruch K, Popiołek Ł, Wujec M. Antimicrobial and Antiprotozoal Activity of 3-acetyl-2,5-disubstituted-1,3,4-oxadiazolines: A Review. Med Chem Res. 2020; 29:1-16. https://doi.org/10.1007/S00044-019-02463-W.

37. Liang J, She J, Fu J, Wang J, Ye Y, Yang B, Liu Y, Zhou X, Tao H. Advances in Natural Products from the Marine-Sponge-Associated Microorganisms with Antimicrobial Activity in the Last Decade. Mar Drugs. 2023; 21(4):236. https://doi.org/10.3390/MD21040236.

38. Deng M, Chen H, Long J, Song J, Xie L, Li X. Atractylenolides (I, II, and III): a Review of their Pharmacology and Pharmacokinetics. Arch Pharm Res. 2021; 44:633–654. https://doi.org/10.1007/S12272-021-01342-6.

39. Meli Sonkoue A, Kengne IC, Tamekou Lacmata S, Jouogo Ngnokam CD, Djamalladine Djamalladine M, Voutquenne-Nazabadioko L, Ngnokam D, Tamokou JDD. Triterpene and Steroids from Ludwigia abyssinica A. Rich (Onagraceae) Displayed Antimicrobial Activities and Synergistic Effects with Conventional Antibiotics. Evidence-Based Complement Altern Med. 2023; 2023:2975909. https://doi.org/10.1155/ 2023/2975909.

40. Vollaro A, Esposito A, Antonaki E, Iula VD, D’alonzo D, Guaragna A, De Gregorio E. Steroid Derivatives as Potential Antimicrobial Agents against Staphylococcus aureus Planktonic Cells. Microorganisms. 2020; 8(4):468. https://doi.org/10.3390/ MICROORGANISMS8040468.

41. Wang KY, Zhou ZW, Zhang HY, Cao YC, Xu JY, Ma C, Meng QG, Bi Y. Design, Synthesis and Antibacterial Evaluation of 3-Substituted Ocotillol-Type Derivatives. Molecules. 2018; 23(12):3320. https://doi.org/10.3390/MOLECULES23123320.

42. Bae JY, Seo YH, Oh SW. Antibacterial Activities of Polyphenols Against Foodborne Pathogens and their Application as Antibacterial Agents. Food Sci Biotechnol. 2022; 31:985. https://doi.org/10.1007/S10068-022-01058-3.

43. Ijoma IK, Anosike JC, Onwuka C, Njokunwogbu AN, Ajiwe VIE. Phytochemical Constituents of Justicia carnea Leaves and their Antibacterial Activity. Trop J Nat Prod Res. 2025; 9(1):123–127. https://doi.org/10.26538/TJNPR/V9I1.18.

44. Orlo E, Russo C, Nugnes R, Lavorgna M, Isidori M. Natural Methoxyphenol Compounds: Antimicrobial Activity Against Foodborne Pathogens and Food Spoilage Bacteria, and Role iIn Antioxidant Processes. Foods. 2021; 10(8):1807. https://doi.org/10.3390/FOODS10081807/S1.