In Silico ADMET Profiling and Toxicological Evaluation of Sudan IV Dye on Allium cepa (Onions) Root Meristems

Main Article Content

Gbenga Alege
Opeyemi Ayorinde
Olabanjo Ifatimehin
Suleiman Alakanse
Enifome Adams
Amina Musa
Ruth Fanwo
Mariam Sani
Monday Yakubu

Abstract

The widespread use of Sudan IV dye in the food industry raises serious concerns regarding its potential toxicity. This study therefore employed in-silico ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) profiling to assess the toxicological potential of Sudan IV dye. Additionally, the cytotoxic and genotoxic effects of the dye were done using the root meristems of Allium cepa. ADMET prediction tools were employed to assess the physicochemical properties and toxicity profiles of the compound. For cytogenotoxic assessments, onion roots were exposed to 0.1%, 0.5%, and 1.0% concentrations of Sudan IV dye and ethanol for 24, 48, and 72 hours, with distilled water as the control for the study. Treated cells were fixed, hydrolyzed, squashed, and stained for microscopic observation at 1000x magnification. The ADMET profile prediction indicated a significant potential for bioaccumulation in adipocytes and highlighted risks of genotoxicity, carcinogenicity, mutagenicity, hematotoxicity, and nephrotoxicity. The dye significantly induced (P < 0.05) nine chromosomal abnormalities in A. cepa root tips especially after 72 hours of exposure. These induced abnormalities included sticky chromosomes, ghost cells, faulty polarity, chromosome bridges, C-mitosis, vacuolated cells, binucleate cells, fragmented chromosomes, and spindle disturbances. The highest root growth inhibition of 82.93% occurred with 1.0% Sudan IV dye treatment, while ethanol caused the least inhibition of 58.54%. Furthermore, Sudan IV dye significantly reduced the mitotic index across exposed durations, indicating disruption of normal cell division. This study demonstrates the toxicity of Sudan IV dye and suggests that its use especially in food products should be discouraged. 

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Alege, G., Ayorinde, O., Ifatimehin, O., Alakanse, S., Adams, E., Musa, A., Fanwo, R., Sani, M., & Yakubu, M. (2025). In Silico ADMET Profiling and Toxicological Evaluation of Sudan IV Dye on Allium cepa (Onions) Root Meristems . Tropical Journal of Natural Product Research (TJNPR), 9(5), 2204-2213. https://doi.org/10.26538/tjnpr/v9i5.47

References

Tomar S, Sharma N, Kumar R. Effect of organic food production and consumption on the affective and cognitive well-being of farmers: analysis using prism of NVivo, etic and emic approach. Environ Dev Sustain. 2024; 26(5): 11027-11048.

Godos J, Scazzina F, Paternò Castello C, Giampieri F, Quiles JL, Briones Urbano M, Battino M, Galvano F, Iacoviello L, De-Gaetano G, Bonaccio M. Underrated aspects of a true Mediterranean diet: understanding traditional features for worldwide application of a “Planeterranean” diet. J Transl Med. 2024; 22(1): 294-302.

Simmat B. The Incredible Story of Cooking: From Prehistory to Today, 500,000 Years of Adventure. Paris: NBM Press; 2024. 240 p.

Ciobanu MM, Flocea EI, Boișteanu PC. The impact of artificial and natural additives in meat products on neurocognitive food perception: A narrative review. Foods. 2024; 13(23): 3908-3914.

Absalome MA, Massara CC, Alexandre AA, Gervais K, Chantal GGA, Ferdinand D, Rhedoor AJ, Coulibaly I, George TG, Brigitte T, Marion M. Biochemical properties, nutritional values, health benefits and sustainability of palm oil. Biochimie. 2020; 178: 81-95.

Leng S, Cheah W, Pahri SDR, Lin NS, Choy E. A systematic literature review on environmental issues and challenges towards the palm oil industry. J Sustain Sci Manag. 2024; 19(1): 154-170.

Durango-Giraldo G, Zapata-Hernandez C, Santa JF, Buitrago-Sierra R. Palm oil as a biolubricant: Literature review of processing parameters and tribological performance. J Ind Eng Chem. 2022; 107: 31-44.

Liu R, Hei W, He P, Li Z. Simultaneous determination of fifteen illegal dyes in animal feeds and poultry products by ultra-high performance liquid chromatography tandem mass spectrometry. J Chromatogr B. 2011; 879(24): 2416-2422.

Zaukuu JLZ, Abaidoo-Ayin L, Bimpong D, Amponsah L, Mensah ET. Predictive techniques for authenticating and quantifying crude palm oil adulterated with leaf extract and food color: An ultra-violet visible spectrophotometric approach. J Food Compos Anal. 2024; 126: 105895.

Eteng OE, Moses CA, Ugwor EI, Enobong JE, Akamo AJ, Adebekun Y, Iwara A, Ubana E. Ingestion of Sudan IV-adulterated palm oil impairs hepato-renal functions and induces the overexpression of pro-inflammatory cytokines: A sub-acute murine model. Egypt J Basic Appl Sci. 2022; 9(1): 11-22.

Gold IL, Imoisi OB, Akpose OI. Thin layer chromatographic techniques for detection of Sudan dyes in palm oil. J Chem Soc Nigeria. 2023; 48(2): 12-21. doi:10.46602/jcsn.v48i2.877.

Olatunji GA, Olaniyi AA. The prevalence of Sudan dyes in food products: A review of health implications. Afr J Food Sci. 2019; 13(4): 45-52. doi:10.5897/AJFS2019.1778.

Adebayo AH, Ojo O. Detection of Sudan dye in palm oil: Implications for public health in Nigeria. J Food Saf. 2020; 40(2): 12755. doi:10.1111/jfs.12755.

Asiriuwa NU, Akpose IO, Okogbenin EA, Imoisi OB, Onyia DC, Okunwaye T, Gold IL, Obibuzor JU, Anemene H. UV spectrophotometric quantification of Sudan-IV dye in palm oil from major markets of Benin Metropolis. Asian J Res Biochem. 2023; 13(3): 87-93.

European Commission. Rapid Alert System for Food and Feed (RASFF): Annual report 2020. 2021. Available from: https://ec.europa.eu/food/sites/food/files/safety/docs/rasff_annual_report_2020.pdf

Ullah A, Chan MWH, Aslam S, Khan A, Abbas Q, Ali S, Ali M, Hussain A, Mirani ZA, Sibt-e-Hassan S, Kazmi MR. Banned Sudan dyes in spices available at markets in Karachi, Pakistan. Food Addit Contam Part B. 2023; 16(1): 69-76.

National Agency for Food and Drug Administration and Control (NAFDAC). Guidelines on the regulation of food additives and contaminants in Nigeria. 2018. Available from: https://www.nafdac.gov.ng

Alim-un-Nisa AUN, Naseem ZNZ, Farwa AFA. Detection of Sudan dyes in different spices. Pak J Food Sci. 2015; 25(3): 144-149.

Kaur S, Kaur R. Sudan dyes: A review on their toxicity and carcinogenicity. J Environ Biol. 2015; 36(4): 751-758. http://www.jeb.co.in/journal_issues/201507_jul15/paper_12.pdf.

Kola-Ajibade IR, Jegede RJ, Olusola AO. Biochemical Changes in Hematological and Liver Parameters in Albino Rats Exposed to Azo Dye Adulterated Palm Oil. J Toxicol Risk Assess. 2021; 7: 42-49.

Zhang L, Wang Y. A review of quantitative structure–activity relationship (QSAR) modeling in food safety assessment: Current status and future directions. Food Chem. 2019; 276: 1-12. doi:10.1016/j.foodchem.2018.10.058.

Çevik UA, Işik A, Karakaya A. ADMET and Physicochemical assessments in drug design. Comput Methods Rational Drug Des. 2025; 13: 123-151.

Unsal V, Yıldız R, Korkmaz A, Mert BD, Calıskan CG, Oner E. Evaluation of extra virgin olive oil compounds using computational methods: in vitro, ADMET, DFT, molecular docking and human gene network analysis study. BMC Chem. 2025; 19(1): 3-11.

Duran J, Pardo J. Advances in computational toxicology: A review of the applications of machine learning in ADMET predictions. Toxicol Lett. 2021; 335: 34-41. doi:10.1016/j.toxlet.2020.09.003.

Özkan B, Çavuşoğlu K, Yalçin E, Acar A. Investigation of multidirectional toxicity induced by high-dose molybdenum exposure with Allium test. Sci Rep. 2024; 14(1): 8651-8659.

Meetiyagoda TAOK, Samarakoon T, Takahashi T, Fujino T. Cytogenotoxicity of raw and treated dairy manure slurry by two-stage chemical and electrocoagulation: An application of the Allium cepa bioassay. Sci Total Environ. 2024; 915-922.

Bonciu E, Firbas P, Fontanetti CS, Wusheng J, Karaismailoğlu MC, Liu D, Menicucci F, Pesnya DS, Popescu A, Romanovsky AV, Schiff S. An evaluation for the standardization of the Allium cepa test as cytotoxicity and genotoxicity assay. Caryologia. 2018; 71(3): 191-209.

Luber J, Palmieri MJ, Botelho CM, Rinaldo D, Andrade-Vieira LF. Investigation on the effects of guava (Psidium guajava L.) infusions on germination, root tips and meristematic cells of Latuca sativa. An Acad Bras Cienc. 2015; 87: 903-913.

Neves CS, Gomes SSL, dos Santos TR, de Almeida MM, de Souza YO, Garcia RMG, Otoni WC, Chedier LM, Viccini LF, De-Campos JMS. The phytoecdysteroid β-ecdysone is genotoxic in Rodent Bone Marrow Micronuclei and Allium cepa L. Assays. J Ethnopharmacol. 2016; 177: 81-84.

Melo ECD, Pinheiro RDS, Costa BS, Lima RMTD, Dias ACS, Santos T, Nascimento MLLBD, Sousa JMDC, Islam MT, Melo-Cavalcante AACD, El-Nashar HA. Allium cepa as a toxicogenetic investigational tool for plant extracts: A systematic review. Chem Biodivers. 2024; 202-211

Sharma D, Rani R, Chaturvedi M, Rohilla P, Yadav JP. In silico and in vitro approach of Allium cepa and isolated quercetin against MDR bacterial strains and Mycobacterium smegmatis. South Afr J Bot. 2019; 124: 29-35.

Alege GO, Ojo BH, Ifenji GI, Kachi JB, Tawose FO, Glen E, Oladimeji EO. Cytogenetic effects of radiation from projector on meristematic cells of Allium cepa (onions) root. J Appl Sci Environ Manage. 2022; 26(4): 737-744.

Kiełkowska A. Cytogenetic effect of prolonged in vitro exposure of Allium cepa L. root meristem cells to salt stress. Cytol Genet. 2017; 51: 478-484.

Ramamurthy K, Madesh S, Priya PS, Ayub R, Aljawdah HM, Arokiyaraj S, Guru A, Arockiaraj J. Textile azo dye, Sudan Black B, inducing hepatotoxicity demonstrated in in vivo zebrafish larval model. Fish Physiol Biochem. 2024; 50(4): 1811-1829.

Liman R, Ciğerci İH, Öztürk NS. Determination of genotoxic effects of Imazethapyr herbicide in Allium cepa root cells by mitotic activity, chromosome aberration, and comet assay. Pestic Biochem Physiol. 2015; 118: 38-42.

Wijeyaratne WMDN, Wadasinghe LGYJG. Allium cepa bio assay to assess the water and sediment cytogenotoxicity in a tropical stream subjected to multiple point and nonpoint source pollutants. J Toxicol. 2019; 2019: 1-10. doi:10.1155/2019/5420124.

Akinboro A, Bakare AA. Cytotoxic and genotoxic effects of aqueous extracts of five medicinal plants on Allium cepa Linn. J Ethnopharmacol. 2007; 112(3): 470-475. doi:10.1016/j.jep.2007.04.014.

Karaismailoğlu MC. Cytotoxic and genotoxic effects of Oxyfluorfen on the somatic cells of Allium cepa. KSU J Agric Nat. 2022; 25(2): 207-214.

Ili P, Sari F. Evaluation of the cytogenetic and genotoxic effects of an abamectin-based pesticide on Allium cepa roots. Arch Biol Sci. 2024; 76(4): 477-490.

Ping KY, Darah I, Yusuf UK, Yeng C, Sasidharan S. Genotoxicity of Euphorbia hirta: An Allium cepa assay. Molecules. 2012; 17: 7782-7791. doi:10.3390/molecules17077782.

Argikar U, Blatter M, Bednarczyk D, Chen Z, Cho YS, Doré M, Dumouchel JL, Ho S, Hoegenauer K, Kawanami T, Mathieu S. Paradoxical increase of permeability and lipophilicity with the increasing topological polar surface area within a series of PRMT5 inhibitors. J Med Chem. 2022; 65(18): 12386-12402.

Fagerholm U. Prediction of human pharmacokinetics—gastrointestinal absorption. J Pharm Pharmacol. 2007; 59(7): 905-916.

Ijoma IK, Okafor CE, Ajiwe VIE. Computational studies of 5- methoxypsolaren as potential deoxyhemoglobin S polymerization inhibitor. Trop J Nat Prod Res. 2024; 8(10): 8835 – 8841 https://doi.org/10.26538/tjnpr/v8i10.28

Bufarwa SM, Belaidi M, Abbass LM, Thbayh DK. Anticancer activity, DFT, molecular docking, ADMET, and molecular dynamics simulations investigations of Schiff Base Derived from 2, 3‐Diaminophenazine and its metal complexes. Appl Organomet Chem. 2025; 39(1): 7953.

Aboubakr M, Elbadawy M. Pharmacokinetics, tissue residues and efficacy of d-tylo50/25® (tylosin-doxycycline combination) in broiler chickens. Int J Basic Clin Pharmacol. 2017; 6(2): 383. doi:10.18203/2319-2003.ijbcp201703

Rojas-Lemus M, López-Valdez N, Bizarro-Nevares P, González-Villalva A, Ustarroz-Cano M, Zepeda-Rodríguez A, Pasos-Nájera F, García-Peláez I, Rivera-Fernández N, Fortoul TI. Toxic effects of inhaled vanadium attached to particulate matter: a literature review. Int J Environ Res Public Health. 2021; 18(16): 8457.

Ghannay S, Kadri A, Aouadi K. Synthesis, in vitro antimicrobial assessment, and computational investigation of pharmacokinetic and bioactivity properties of novel trifluoromethylated compounds using in silico ADME and toxicity prediction tools. Monat Chem. 2020; 151: 267-280.

Verma S, Srivastava A. Morphotoxicity and cytogenotoxicity of pendimethalin in the test plant Allium cepa L.-A biomarker based study. Chemosphere. 2018; 206: 248-254.

Jones LK, Lee HJ. Ethanol-induced cellular stress and apoptosis in root cells. Plant Cell Rep. 2020; 39(2): 215-25. doi:10.1007/s00299-019-02456-7.

Badr A, El-Shazly HH, Mohamed HI. Plant Responses to Induced Genotoxicity and Oxidative Stress by Chemicals. In: Khan Z, Ansari MYK, Shahwar D, editors. Induced genotoxicity and oxidative stress in plants. Singapore: Springer; 2021. doi:10.1007/978-981-16-2074-4_4.

Shakyawal S, Bhat RA, Yadav S, Gautan S, Mishra G, Jain P, Jain J, Nahar M, Hasan W, Jat D. Onion (Allium cepa) chromosomal aberration test for evaluating effect of distilled water and Lake Water, Sagar, M.P-India. Madhya Bharti J Sci. 2019; 61(2): 83-97.

Terracina S, Tarani L, Ceccanti M, Vitali M, Francati S, Lucarelli M, Venditti S, Verdone L, Ferraguti G, Fiore M. The impact of oxidative stress on the epigenetics of fetal alcohol spectrum disorders. Antioxidants. 2024; 13(4): 410.

Kumar V, Singh A, Verma S. Genotoxic effects of synthetic dyes on Allium cepa: A cytogenetic study. Plant Physiol Biochem. 2024; 158: 45-52. doi:10.1016/j.plaphy.2021.01.012.

Ristea ME, Zarnescu O. Effects of indigo carmine on growth, cell division, and morphology of Allium cepa L. root tip. Toxics. 2024; 12(3): 194.

Singh M, Chadha P. Assessment of synthetic food dye erythrosine induced cytotoxicity, genotoxicity, biochemical and molecular alterations in Allium cepa root meristematic cells: insights from in-silico study. Toxicol Res. 2024; 13(4): 126.

Nithya MN, Raavi V. The role of insulin-like growth factor-axis and mitotic index in South Indian neonates with small for gestational age. Fetal Pediatr Pathol. 2023; 42(2): 216-226.

Patel M, Desai S, Joshi R. Mitotic index and chromosomal aberrations in plant cells exposed to toxic substances. Cytogenet Cell Biol. 2022; 167(4): 321-330. doi:10.1159/000123456.

Arcara PG, Ronchi VN. Effect of Ethyl alcohol on the mitotic cycle of Allium cepa root meristems. Int J Cytol Cytosyst Cytogenet. 2014; 20(3): 229-232. doi:10.1080/00087114.1967.10796261.