Unveiling the Evolutionary History and Structural Dynamics of Dioscorea bulbifera L. and Congeners through matK Gene In silico Analysis
Main Article Content
Abstract
Aerial yam (Dioscorea bulbifera) is a valuable tuber crop with numerous health benefits. However, due to insufficient conservation and breeding efforts, its genetic diversity is threatened, risking genetic erosion and the loss of wild relatives. This study examines genetic relationships using the chloroplast matK gene. Nucleotide sequences from the NCBI database were analyzed with MEGA 6 for phylogenetic and maternal lineage assessments. GC content was calculated using Genscan, domain architecture was evaluated with SMART tools, and tertiary protein structures were predicted via Phyre2. Phylogenetic analyses revealed distinct groupings of Dioscorea species into three primary clades, with D. bulbifera positioned within the third clade, indicating its conserved genetic lineage. High bootstrap values supported the robustness of the phylogenetic tree, while maternal lineage analysis positioned D. bulbifera as a likely ancestral clade within the genus. Guanine-cytocine content ranged from 31.78% to 32.40%, with D. bulbifera showing the highest value, indicating increased molecular stability. The matK protein contained two primary domain types. Most species had a single low-complexity domain, but D. transversa exhibited transmembrane and low-complexity domains, and D. pseudojaponica showed two low-complexity domains. Predicted protein structures revealed conserved folding patterns, although D. arcuatinervis lacked beta sheets, implying adaptive divergence. This study highlights the evolutionary importance of D. bulbifera and the matK gene, emphasising their relevance for phylogenetics, conservation, and breeding strategies within the Dioscorea genus. Future studies can employ genome-wide analyses and transcriptomics to investigate the regulatory mechanisms of matK gene expression and its role in Dioscorea genus evolution and biotechnology.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Kundu BB, Vanni K, Farheen A, Jha P, Pandey DK, Kumar V. Dioscorea bulbifera L. (Dioscoreaceae): A review of its ethnobotany, pharmacology and conservation needs. S Afr J Bot. 2021; 140:365–374. Doi: https://doi.org/10.1016/j.sajb.2020.07.028
Kayode RMO, Buhari OJ, Otutu LO, Ajibola TB, Oyeyinka SA, Opaleke DO, Akeem SA. Physicochemical properties of processed aerial yam (Dioscorea bulbifera) and sensory properties of paste (Amala) prepared with cassava flour. J Agric Sci. 2017;12(2):84–94. Doi: http://dx.doi.org/10.4038/jas.v12i2.8227
Osuagwu A, Edem U, Edu N, Phillip J, Emeagi L, Iheanetu C, Sunday J, Acha A, and Ojong M. Unveiling the genetic diversity of aerial yam (Dioscorea bulbifera L.): Morphological insights for sustainable crop improvement. Annu Res Rev Biol. 2024;39(12):78–89. Doi: https://doi.org/ARRB.128146
Osuagwu AN, Edem UL, Kalu SE. Evaluation of genetic diversity in aerial yam (Dioscorea bulbifera L.) using qualitative and quantitative morphological traits. Glob Sci J. 2019;7(11): 368-390
Osuagwu AN, Edem UL. Evaluation of genetic diversity in aerial yam (Dioscorea bulbifera L.) using simple sequence repeats (SSR) markers. Agrotechnol. 2021; 9:202-208. Doi: https://doi.org/10.35248/2168-9881.20.9.202
Ojone AS, Oricha KA, Frank OD. Planning for food security using roots and tubers as functional foods in Nigeria: A review. In: Emerg Challenges Agric Food Sci. 2021; 2: 17-25. Doi: https://doi.org/10.9734/bpi/ecafs/v2/3821F
Ikiriza H, Ogwang PE, Peter EL, Hedmon O, Tolo CU, Abubaker M, Abdalla AAM. Dioscorea bulbifera, a highly threatened African medicinal plant, a review. Cogent Biol. 2019;5(1) 1-6. Doi: https://doi.org/10.1080/23312025.2019.1631561
Roy A, Khan A, Ahmad I, Alghamdi S, Rajab BS, Babalghith AO, Alshahrani MY, Islam S, Islam MR. Flavonoids: A bioactive compound from medicinal plants and its therapeutic applications. Biomed Res Int. 2022; 1-9 Doi: https://doi.org/10.1155/2022/5445291
Kumar A, Nirmal P, Mukul K, Jose A, Tomer V, Oz E, Proestos C, Zeng M, Elobeid T, K S, Oz F. Major phytochemicals: Recent advances in health benefits and extraction methods. Mol. 2023;28(2): 1-41. Doi: https://doi.org/10.3390/molecules28020887
Adomėnienė A, Venskutonis PR. Dioscorea spp.: Comprehensive review of antioxidant properties and their relation to phytochemicals and health benefits. Mol. 2022;27(8): 1-36 Doi: https://doi.org/10.3390/molecules27082530
Narzary C, Sarkar D, Das P, Papi D. Ethnobotany, phytochemistry, and pharmacological activity of Dioscorea bulbifera: A comprehensive review. Chem Biodivers. 2024. Doi: https://doi.org/10.1002/cbdv.202401408
Sharma S, Kaul S, Dhar MK. A systematic review on ethnobotany, phytochemistry and pharmacology of Dioscorea bulbifera L. (Dioscoreaceae). S Afr J Bot. 2024; 170:367–393. Doi: https://doi.org/10.1016/j.sajb.2024.05.014
Vishwakarma Y, Pandey V, Shukla R, Dhanorya D, Bairagi G, Gupta V. Pharmacognostic analysis of Dioscorea bulbifera L.: A gateway to its medicinal benefits. Int J Pharmacogn. 2024;11(11):584–594.
Waris R, Agnihotri P, Mandal D, Shukla AC. Dioscorea spp.: Medicinal plant with pharmaceutical uses. In: Adv Med Aromat Plants. 1st ed. Apple Academic Press; 2024. Doi: https://doi.org/10.9781032686905
Kumar S, Das G, Shin H-S, Patra JK. Dioscorea spp. (A wild edible tuber): A study on its ethnopharmacological potential and traditional use by the local people of Similipal Biosphere Reserve, India. Front Pharmacol. 2017; 8:(52): 1-17. Doi: https://doi.org/10.3389/fphar.2017.00052
Kalu SE, Ubi GM, Osuagwu AN, Ekpo IA, Edem LU. Microsatellite fingerprinting, enzyme activity, and chlorophyll profiling of local lines of air potato yam (Dioscorea bulbifera L.) for salt tolerance. Asian J Agric Biol. 2022; 3: 1-14.
Singh A, Bundela AK, Abhilash PC. Nutritional, ethnomedicinal, and agricultural significance of neglected and underutilized crops from Eastern Uttar Pradesh, North India. Agronomy. 2023;13(9):1-30. 2318. Doi: https://doi.org/10.3390/agronomy13092318
Jadhav SS, Jagtap NB, Das S, Arya P, editors. Research trends in life science. 1st ed. Bhumi Publishing; 2023; 1-145. ISBN: 978-93-88901-99-4. Doi: https://www.bhumipublishing.com/book/
Qu Y, Legen J, Arndt J, Henkel S, Hoppe G, Thieme C, Ranzini G, Muino J, Weihe A, Ohler U, Weber G, Ostersetzer O, Schmitz-Linneweber C. Ectopic transplastomic expression of a synthetic matK gene leads to cotyledon-specific leaf variegation. Front Plant Sci. 2018; 9:1-14. Doi: https://doi.org/10.3389/fpls.2018.01453
Pan L, Cai L, Lu Y, Zhao J, Yan X, Wang X. Genomic insights into Paspalum vaginatum: Mitochondrial and chloroplast genome mapping, evolutionary insights, and organelle-nucleus communication. Genomics. 2025;117(1): 1-16 Doi: https://doi.org/10.1016/j.ygeno.2024.110975
Sultan LD, Mileshina D, Grewe F, Rolle K, Abudraham S, Głodowicz P, Niazi AK, Keren I, Shevtsov S, Klipcan L, Barciszewski J, Mower JP, Dietrich A, Ostersetzer-Biran O. The reverse transcriptase/RNA maturase protein MatR is required to splice various group II introns in Brassicaceae mitochondria. Plant Cell. 2016;28(11):2805–2829. Doi: https://doi.org/10.1105/tpc.16.00398
Zhang Y, Tian L, Lu C. Chloroplast gene expression: Recent advances and perspectives. Plant Commun. 2023;4(5):1-19. Doi: https://doi.org/10.1016/j.xplc.2023.100611
Wojciechowski MF, Lavin M, Sanderson MJ. A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. Am J Bot. 2004;91(11):1846–1862. Doi: https://doi.org/10.3732/ajb.91.11.1846
Biswal DK, Debnath M, Kumar S, Tandon P. Phylogenetic reconstruction in the order Nymphaeales: ITS2 secondary structure analysis and in silico testing of maturase K (matK) as a potential marker for DNA barcoding. BMC Bioinformatics. 2012; 13:1-16 (Suppl 17): S26. XDoi: https://doi.org/10.1186/1471-2105-13-S17-S26
Liu Y, Wang K, Liu Z, Luo K, Chen S, Chen K. Identification of medical plants of 24 Ardisia species from China using the matK genetic marker. Pharmacogn Mag. 2013;9(36):331–337. Doi: https://doi.org/10.4103/0973-1296.117829
Müller KF, Borsch T, Hilu KW. Phylogenetic utility of rapidly evolving DNA at high taxonomical levels: Contrasting matK, trnT-F, and rbcL in basal angiosperms. Mol Phylogenet Evol. 2006;41(1):99–117. Doi: https://doi.org/10.1016/j.ympev.2006.06.017
Ahmed SS, Rahman MO, Ali MA, Hemaid FA, Lee J. Molecular phylogenetics and molecular dating of Arecaceae in Bangladesh inferred from matK and rbcL genes. Bangladesh J Plant Taxon. 2023;30(2):213–232. Doi: https://doi.org/10.3329/bjpt.v30i2.70498
CBOL Plant Working Group. A DNA barcode for land plants. Proc Natl Acad Sci U S A. 2009;106(31):12794–12797. Doi: http://www.jstor.org/stable/40484604
Takundwa M, Chimwamurombe PM, Kunert K, Cullis CA. Developing DNA barcoding (matK) primers for marama bean [Tylosema esculentum (Burchell) Schreiber]. Afr J Biotechnol. 2012;11(97) 16305-16312. Doi: https://doi.org/10.5897/AJB11.3169
Jensen PE, Leister D. Chloroplast evolution, structure, and functions. F1000Prime Rep. 2014; 6:(40) 1-14. Doi: https://doi.org/10.12703/P6-40
Ekins S, Mestres J, Testa B. In silico pharmacology for drug discovery: Methods for virtual ligand screening and profiling. Br J Pharmacol. 2007; 152: 9–20 Doi: https://doi.org/10.1038/sj.bjp.0707306
Shaker B, Ahmad S, Lee J, Jung C, Na D. In silico methods and tools for drug discovery. Comput Biol Med. 2021; 137: 1-15. Doi https://doi.org/10.1016/j.compbiomed.2021.104851
Agamah FE, Mazandu GK, Hassan R, Bope CD, Thomford NE, Ghansah A, Chimusa ER. Computational/in silico methods in drug target and lead prediction. Brief Bioinform. 2020;21(5):1663–1675. Doi: https://doi.org/10.1093/bib/bbz103
Edem UL, Osuagwu AN, Edu NE, Emeagi LI, Agbor RB, Nsungo NE, Uno UU, Ekerettee EE. Assessing genetic diversity in squash pumpkin (Cucurbita moschata) through computational analysis of plastid genes. Trop J Nat Prod Res. 2024;8(11):9310–1914. Doi: https://doi.org/10.26538/tjnpr/v8i11.46
Chaudhuri PP, Ghosh S, Dutta A, Choudhury SP. A new kind of computational biology: Cellular automata-based models for genomics and proteomics. Springer Nature. 2018.
Pastorino P, Prearo M, Barceló D. Ethical principles and scientific advancements: In vitro, in silico, and non-vertebrate animal approaches for green ecotoxicology. Green Anal Chem. 2024; 8: 1-9. Doi: https://doi.org/10.1016/j.greeac.2024.100096
Pierri CL, Parisi G, Porcelli V. Computational approaches for protein function prediction: A combined strategy from multiple sequence alignment to molecular docking-based virtual screening. Biochim Biophys Acta. 2010;1804(9):1695–1712. Doi: https://doi.org/10.1016/j.bbapap.2010.04.008
Del Sol A, Jung S. The importance of computational modeling in stem cell research. Trends Biotechnol. 2021;39(2):126–136. Doi: https://doi.org/10.1016/j.tibtech.2020.07.006
Krzywanski J, Sosnowski M, Grabowska K, Zylka A, Lasek L, Kijo-Kleczkowska A. Advanced computational methods for modeling, prediction and optimization—A review. Materials. 2024;17(14): 1-29. Doi: https://doi.org/10.3390/ma17143521
Bhat GR, Sethi I, Rah B, Kumar R, Afroze D. Innovative in silico approaches for characterization of genes and proteins. Front Genet. 2022;13: 1-20. Doi: https://doi.org/10.3389/fgene.2022.865182
Hodos RA, Kidd BA, Shameer K, Readhead BP, Dudley JT. In silico methods for drug repurposing and pharmacology. WIREs Syst Biol Med. 2016;8(3):186–210. Doi: https://doi.org/10.1002/wsbm.1337
Obidiegwu JE, Lyons JB, Chilaka CA. The Dioscorea genus (yam)—An appraisal of nutritional and therapeutic potentials. Foods. 2020;9(9):1304. 1-45. Doi: https://doi.org/10.3390/foods9091304
Selvaraj D, Sarma RK, Ramalingam S. Phylogenetic analysis of chloroplast matK gene from Zingiberaceae for plant DNA barcoding. Bioinformation. 2008;3(1):24–27. Doi: https://doi.org/10.6026/97320630003024
Weisman CM, Murray AW, Eddy SR. Many, but not all, lineage-specific genes can be explained by homology detection failure. PLoS Biol. 2020;18(11): 1-24. Doi: https://doi.org/10.1371/journal.pbio.3000862
Hall P. The Bootstrap and Edgeworth expansion. Illustrated ed. Springer Science & Business Media. 2013. Doi: https://doi.org/10.1007/978-1-4612-4384-7
Ngo-Ngwe MF, Omokolo DN, Joly S. Evolution and phylogenetic diversity of yam species (Dioscorea spp.): Implication for conservation and agricultural practices. PLoS One. 2015;10(12): 1-13.
Ekaette E, Nwofia E, Okocha P, Nnnabue I, Eluwa K, Obidiegwu J, et al. Exploring the genetic diversity and population structure of aerial yams (Dioscorea bulbifera L.) using DArT-seq and agronomic traits. PLoS One. 2024;19(8): 1-19. Doi: https://doi.org/10.1371/journal.pone.0306631
Lu R, Hu K, Sun X, Chen M. Low-coverage whole genome sequencing of diverse Dioscorea bulbifera accessions for plastome resource development, polymorphic nuclear SSR identification, and phylogenetic analyses. Front Plant Sci. 2024; 15:1-13. Doi: https://doi.org/10.3389/fpls.2024.1373297
Liu Y, Liang N, Xian Q, Zhang W. GC heterogeneity reveals sequence-structures evolution of angiosperm ITS2. BMC Plant Biol. 2023;23(1):608.1-12. Doi: https://doi.org/10.1186/s12870-023-04634-9
Beiranvand N, Freindorf M, Kraka E. Hydrogen bonding in natural and unnatural base pairs—A local vibrational mode study. Molecules. 2021;26(8): 1-22. Doi: https://doi.org/10.3390/molecules26082268
Šmarda P, Bureš P, Horová L, Leitch IJ, Mucina L, Pacini E, Tichýa L, Grulicha V, Rotreklováet O. Ecological and evolutionary significance of genomic GC content diversity in monocots. Proc Natl Acad Sci U S A. 2014;111(39): 4096–4102. Doi: https://doi.org/10.1073/pnas.1321152111
Kipkiror N, Muge EK, Ochieno DMW, Nyaboga E. DNA barcoding markers provide insight into species discrimination, genetic diversity, and phylogenetic relationships of yam (Dioscorea spp.). Biologia. 2022;78(1): 1-14. Doi: https://doi.org/10.1007/s11756-022-01244-y
Cascarina SM, Ross ED. Identification of low-complexity domains by compositional signatures reveals class-specific frequencies and functions across the domains of life. PLoS Comput Biol. 2024;20(5)1-42. Doi: https://doi.org/10.1371/journal.pcbi.1011372
Dabravolski SA, Isayenkov SV. Evolution of the membrane transport protein domain. Int J Mol Sci. 2022;23(15):1-13. Doi: https://doi.org/10.3390/ijms23158094
Das Sidhanta SP, Sowdhamini R, Srinivasan N. Comparative analysis of permanent and transient domain-domain interactions in multi-domain proteins. Proteins. 2023;93(1)197-208. Doi: https://doi.org/10.1002/prot.26581
Smith SA, Donoghue MJ. Rates of molecular evolution are linked to life history in flowering plants. Science. 2008;322(5898):86–89. Doi: https://doi.org/10.1126/science.1163197
Perczel A, Gáspári Z, Csizmadia IG. Structure and stability of β-sheets. J Comput Chem. 2005;26(11):1155–1162. Doi: https://doi.org/10.1002/jcc.20255
Feng W, Zhang Z, Zhang J, Nan P, Song Z, Zhang W, et al. Comparative plastomic analysis of cultivated Dioscorea polystachya and its close relatives provides insights on the inter- and intraspecific phylogenies and potential wild origins of domestication. BMC Plant Biol. 2024;24(1): 1-14. Doi: https://doi.org/10.1186/s12870-024-06003-6