ERRATUM: Evaluation of the α-amylase, α-glucosidase, and tyrosinase inhibitory and photoprotective activities of organic solvent and aqueous Extracts of Retama monosperma stem

Main Article Content

Fatima Zahra Benkhouili
Amina Moutawalli
Hanane Benzeid
Anass Doukkali
Ahmed Zahidi

Abstract

Retama monosperma is a medicinal plant widely used in traditional medicine across the Mediterranean region to treat various conditions, including diabetes, rheumatism, hyperlipidemia, and hypertension. The present study aimed to investigate the enzyme (α-amylase, α-glucosidase, and tyrosinase) inhibitory activity as well as the photoprotective effect of the extracts of R. monosperma stem. Organic solvent (hexane, ethyl acetate, and ethanol) extracts of R. monosperma stem were obtained by Soxhlet extraction, while aqueous extract was obtained by maceration. The α-amylase and α-glucosidase inhibitory activities of the extracts were investigated in vitro using the spectrophotometric method. Furthermore, the efficacy of the extracts as dermo-protective and photoprotective agents were evaluated by tyrosinase inhibitory activity and by ultraviolet absorbance test. The results showed that the hexane extract exhibited the highest α-amylase inhibitory activity (IC50 = 273.91 ± 0.61 µg/mL), for the α-glucosidase inhibitory activity, the aqueous extract demonstrated the highest potency (IC50 = 2331.12 ± 2.69 µg/mL). The aqueous extract showed the highest tyrosinase inhibitory activity (615.52 ± 2.54 µg QE/mg extract). Additionally, the 10 mg/mL aqueous extract displayed significant photoprotective activity, with high UVA (1.810 ± 0.031) and UVB (2.112 ± 0.008) absorbance values. The results of this study have highlighted the therapeutic potential of R. monosperma, and established a solid foundation for future research on natural therapies and the development of innovative drugs for the treatment of hyperglycemia and pigmentation disorders.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Benkhouili, F., Moutawalli, A., Benzeid, H., Doukkali, A., & Zahidi, A. (2025). ERRATUM: Evaluation of the α-amylase, α-glucosidase, and tyrosinase inhibitory and photoprotective activities of organic solvent and aqueous Extracts of Retama monosperma stem. Tropical Journal of Natural Product Research (TJNPR), 9(5), 2357 – 2363. https://doi.org/10.26538/tjnpr/v9i5.66

References

1. Aktar K and Foyzun T. Phytochemistry and Pharmacological Studies of Citrus macroptera : A Medicinal Plant Review. Evid Based Complement Alternat Med. 2017; 2017(1):9789802. https://onlinelibrary.wiley.com/doi/10.1155/2017/9789802

2. Alagesan V, Ramalingam S, Kim M, Venugopal S. Antioxidant activity guided isolation of a coumarin compound from Ipomoea pes-caprea (Convolvulaceae) leaves acetone extract and its biological and molecular docking studies. Eur J Integr Med. 2019; 32:100984. https://doi.org/10.1016/j.eujim.2019.100984

3. El-guourrami O, Salhi N, Benkhouili FZ, Zengin G, Yilmaz MA, Ameggouz M, Zahidi A, Rouas L, Bouyahya A, Goh KW, Sam TH, Ming LC, Doukkali A, Benzeid H. Phytochemical composition and toxicity assessment of Ammi majus L. Asian Pac J Trop Biomed. 2023;13(4):165‑175. https://journals.lww.com/10.4103/2221-1691.374233

4. Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol. 2014; 4:177. https://doi.org/10.3389/fphar.2013.00177

5. Aburjai T and Natsheh FM. Plants used in cosmetics. Phytotherapy Research. 2003; 17(9):987‑1000. https://doi.org/10.1002/ptr.1363

6. Ameggouz M, Drioua S, El-Guourrami O, Azalmad H, Metni KEB, Koursaoui L, Zahidi A, Doukkali A, Satrani B, Benzeid H.. Assessment of Acute Toxicity and Analgesic Effect of Cedrus atlantica (Endl.) G. Manetti ex Carrière Stem Extracts. Trop J Nat Prod Res. 2024;8(7). https://doi.org/10.26538/tjnpr/v8i7.7

7. Salhi N, El Guourrami O, Rouas L, Moussaid S, Moutawalli A, Benkhouili FZ, Ameggouz M, Alshahrani MM, Al Awadh AA, Bouyahya A, Faouzi MEA, Cherrah Y. Evaluation of the Wound Healing Potential of Cynara humilis Extracts in the Treatment of Skin Burns. Evid Based Complement Alternat Med. 2023; 2023(1):5855948. https://onlinelibrary.wiley.com/doi/10.1155/2023/5855948

8. Benkhouili FZ, Moutawalli A, El-Guourrami O, Benzeid H, Doukkali A, Zahidi A. Assessment of Acute Toxicity and Analgesic Activity of Organic and Aqueous Fractions from Retama monosperma Stems. Trop J Nat Prod Res. 2024; 8(7):7682-7687. https://doi.org/10.26538/tjnpr/v8i7.8

9. Moutawalli A, Benkhouili FZ, Doukkali A, Benzeid H, Zahidi A. The biological and pharmacologic actions of Lawsonia inermis L. Phytomed Plus. 2023; 3(3):100468. https://doi.org/10.1016/j.phyplu.2023.100468

10. Sofowora A, Ogunbodede E, Onayade A. The role and place of medicinal plants in the strategies for disease prevention. Afr J Tradit Complement Altern Med. 2013; 10(5):210‑229. https://www.ajol.info/index.php/ajtcam/article/view/92333

11. Gonçalves S and Romano A. Inhibitory properties of phenolic compounds against enzymes linked with human diseases. In: Phenolic compounds-biological activity. M. Soto-Hernández, M. Palma-Tenango, M.D.R. García-Mateos. London, UK: IntechOpen; 2017; 99‑118 p.

12. Ramsay R and Tipton K. Assessment of Enzyme Inhibition: A Review with Examples from the Development of Monoamine Oxidase and Cholinesterase Inhibitory Drugs. Molecules. 2017; 22(7):1192. https://doi.org/10.3390/molecules22071192

13. Adam Z, Khamis S, Ismail A, Hamid M. Inhibitory properties of Ficus deltoidea on α-glucosidase activity. Res J Med Plant. 2010; 4(2):61-75. https://doi.org/10.3923/rjmp.2010.61.75

14. Gulati V, Harding IH, Palombo EA. Enzyme inhibitory and antioxidant activities of traditional medicinal plants: Potential application in the management of hyperglycemia. BMC Complement Altern Med. 2012; 12(1):77. https://bmccomplementalternmed.biomedcentral.com/articles/10.1186/1472-6882-12-77

15. Chang TS. An Updated Review of Tyrosinase Inhibitors. Int J Mol Sci. 2009; 10(6):2440‑2475. https://www.mdpi.com/1422-0067/10/6/2440

16. Bellakhdar J. The traditional Moroccan pharmacopoeia: ancient Arabic medicine and popular knowledge. Ibis Press. Paris; 1997.

17. Greuter W, Burdet HM, Long G. Med-Checklist: a critical inventory of vascular plants of the circum-mediterranean countries. 3. Dicotyledones (Convolvulaceae-Labiatae). Med-Checklist. Vol. 8. Geneva, Switzerland.; 1986.

18. León-González AJ, Navarro I, Acero N, Muñoz Mingarro D, Martín-Cordero C. Genus Retama: a review on traditional uses, phytochemistry, and pharmacological activities. Phytochem Rev. 2018; 17(4):701‑731. https://link.springer.com/article/10.1007/s11101-018-9555-3

19. Benrahmoune IZ and Dubruille C. Invitation a L’amour Des Plantes–R´ eserve Biologique De Sidi-Boughaba. d ´ Scriptra. 2003.

20. Benkhouili FZ, Moutawalli A, Benzeid H, Doukkali A, Zahidi A. Retama monosperma (L.) Boiss.: A review of its uses in traditional medicine, chemical constituents, and pharmacologic activities. Phytomed Plus. 2022; 2(4):100349. https://doi.org/10.1016/j.phyplu.2022.100349

21. Belmokhtar Z and Harche MK. In vitro antioxidant activity of Retama monosperma (L.) Boiss. Nat Prod Res. 2014; 28(24):2324‑2329. https://doi.org/10.1080/ 14786419.2014.934237

22. González-Mauraza H, Martín-Cordero C, Alarcón-de-la-Lastra C, Rosillo MA, León-González AJ, Sánchez-Hidalgo M. Anti-inflammatory effects of Retama monosperma in acute ulcerative colitis in rats. J Physiol Biochem. 2014; 70(1):163‑172. https://doi.org/10.1007/s13105-013-0290-3

23. Merghoub N, Benbacer L, Amzazi S, Morjani H, El-Mzibri M. Cytotoxic effect of some Moroccan medicinal plant extracts on human cervical cell lines. J Med Plants Res. 2009; 3(12):1045-1050.

24. El Hamdani N, Filali-Ansari N, Fdil R, El Abbouyi A, El Khyari S. Antifungal activity of the alkaloids extracts from aerial parts of Retama monosperma. Res J Pharm Biol Chem Sci. 2016; 7(2):965‑971.

25. Touati D, Allain P, Pellecuer J, Fkih-Tetouani S, Agoumi A. Alkaloids from Retama monosperma ssp. eumonosperma. Fitoterapia. 1996; 67:49‑52.

26. Derhali S, El Hamdani N, Fdil R, Mouzdahir A, Sraidi K. Chemical composition of essential oils of Retama monosperma (L.) Boiss. from Morocco. Res J Pharm Biol Chem Sci. 2016; 7(4):2102‑2106.

27. El Hamdani N and Fdil R. Evaluation of fatty acids profile and mineral content of Retama monosperma (L.) Boiss. of Morocco. J Mater Environ Sci. 2015; 6(2):538‑545.

28. Belayachi L, Aceves-Luquero C, Merghoub N, Bakri Y, Fernández De Mattos S, Amzazi S, Villalonga P. Retama monosperma n-hexane extract induces cell cycle arrest and extrinsic pathway-dependent apoptosis in Jurkat cells. BMC Complement Altern Med. 2014; 14(1):38. https://link.springer.com/article/10.1186/1472-6882-14-38

29. Benkhouili FZ, Moutawalli A, Ouchari L, El Fahime E, Benzeid H, Doukkali A, Zahidi A. Evaluation of the content of polyphenols, flavonoids and tannins, the antioxidant capacity, and the antimicrobial activity of different organic and aqueous fractions of stems of Retama monosperma. Plant Sci Today. 2024; 11(2):1-11. https://doi.org/10.14719/pst.2944

30. Dabiré PA, Somé AA, Sawadogo S, Sayah K, Fettach S. Antioxidant and Anti-Hyperglycemic Activities of Aqueous and Hydro-Ethanolic Extracts of Excoecaria grahamii (Euphorbiacea). Sch Acad J Pharm. 2022; 9:133‑139. https://doi.org/Sch Acad J Pharm

31. Benrahou K, Naceiri Mrabti H, Bouyahya A, Daoudi NE, Bnouham M, Mezzour H, Mahmud S, Alshahrani MM, Obaidullah AJ, Cherrah Y, Faouzi MEA. Inhibition of α-Amylase, α-Glucosidase, and Lipase, Intestinal Glucose Absorption, and Antidiabetic Properties by Extracts of Erodium guttatum. Evid Based Complement Alternat Med. 2022; 2022:1‑10. https://www.hindawi.com/journals/ecam/2022/5868682/

32. Lee CJ, Chen LG, Chang TL, Ke WM, Lo YF, Wang CC. The correlation between skin-care effects and phytochemical contents in Lamiaceae plants. Food Chem. 2011; 124(3):833‑841. https://doi.org/10.1016/j.foodchem.2010.07.003

33. Zakhour R, El-Guourrami O, Bouothmany K, El Ftouh S, Benkhouili FZ, Benzeid H, Tligui H, Cherrah Y, Benbacer L, Alaoui K. Antioxidant, photoprotective, cytotoxic, and antimicrobial activities of Albuca amoena Batt. J Herbmed Pharmacol. 2024; 13(1):101‑110. https://herbmedpharmacol.com/Article/jhp-48140

34. Quazi A, Patwekar M, Patwekar F, Alghamdi S, Rajab BS, Babalghith AO, Islam F. In Vitro Alpha-Amylase Enzyme Assay of Hydroalcoholic Polyherbal Extract: Proof of Concept for the Development of Polyherbal Teabag Formulation for the Treatment of Diabetes. J Evid-Based Complementary Altern Med. 2022; 2022:1‑7. https://doi.org/10.1155/2022/1577957

35. Tundis R, Loizzo MR, Menichini F. Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini Rev Med Chem. 2010; 10(4):315‑331. https://doi.org/10.2174/138955710791331007

36. Deng Y, Huang L, Zhang C, Xie P, Cheng J, Wang X, Liu L. Novel polysaccharide from Chaenomeles speciosa seeds: Structural characterization, α-amylase and α-glucosidase inhibitory activity evaluation. Int J Biol Macromol. 2020; 153:755‑766. https://doi.org/10.1016/j.ijbiomac.2020.03.057

37. Gong L, Feng D, Wang T, Ren Y, Liu Y, Wang J. Inhibitors of α‐amylase and α‐glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Sci Nutr. 2020; 8(12):6320‑6337. https://doi.org/10.1002/fsn3.1987

38. Hasan T, Islam A, ara khanom Riva R, Rahman MN, Ahmed S, Islam MA, Daula AFMS. Phytochemicals from Zingiber capitatum rhizome as potential α-glucosidase, α-amylase, and glycogen phosphorylase inhibitors for the management of Type-II diabetes mellitus: Inferences from in vitro, in vivo and in-silico investigations. Arab J Chem. 2023; 16(10):105128. https://doi.org/10.1016/j.arabjc.2023.105128

39. Kasote DM, Katyare SS, Hegde MV, Bae H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci. 2015; 11(8):982. https://www.ijbs.com/v11p0982.htm

40. Luisi G, Stefanucci A, Zengin G, Dimmito MP, Mollica A. Anti-oxidant and tyrosinase inhibitory in vitro activity of amino acids and small peptides: New hints for the multifaceted treatment of neurologic and metabolic disfunctions. Antioxidants. 2018; 8(1):7. https://doi.org/10.3390/antiox8010007

41. Arun KB, Thomas S, Reshmitha TR, Akhil GC, Nisha P. Dietary fibre and phenolic-rich extracts from Musa paradisiaca inflorescence ameliorates type 2 diabetes and associated cardiovascular risks. J Funct Foods. 2017; 31:198‑207. https://doi.org/10.1016/j.jff.2017.02.001

42. Nur-e-Alam M, Yousaf M, Parveen I, Hafizur RM, Ghani U, Ahmed S, Hameed A, Threadgill MD, Al-Rehaily AJ. New flavonoids from the Saudi Arabian plant Retama raetam which stimulates secretion of insulin and inhibits α-glucosidase. Org Biomol Chem. 2019; 17(5):1266‑1276. https://pubs.rsc.org/en/content/articlelanding/2019/ob/c8ob02755b

43. Algandaby MM, Alghamdi HA, Ashour OM, Abdel-Naim AB, Ghareib SA, Abdel-Sattar EA, Hajar AS. Mechanisms of the antihyperglycemic activity of Retama raetam in streptozotocin-induced diabetic rats. Food Chem Toxicol. 2010; 48(8‑9):2448‑2453. https://doi.org/10.1016/j.fct.2010.06.010

44. Chouaibi M, Rezig L, Lakoud A, Boussaid A, Hassouna M, Ferrari G, Hamdi S. Exploring potential new galactomannan source of Retama reatam seeds for food, cosmetic and pharmaceuticals: Characterization and physical, emulsifying and antidiabetic properties. Int J Biol Macromol. 2019; 124:1167‑1176. https://doi.org/10.1016/j.ijbiomac.2018.12.007

45. Maghrani M, Zeggwagh NA, Haloui M, Eddouks M. Acute diuretic effect of aqueous extract of Retama raetam in normal rats. J Ethnopharmacol. 2005; 99(1):31‑35. https://doi.org/10.1016/j.jep.2005.01.045

46. ElObeid AS, Kamal‐Eldin A, Abdelhalim MAK, Haseeb AM. Pharmacological Properties of Melanin and its Function in Health. Basic Clin Pharmacol Toxicol. 2017; 120(6):515‑522. https://doi.org/10.1111/bcpt.12748

47. Solano F, Briganti S, Picardo M, Ghanem G. Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Res. 2006; 19(6):550‑571. https://www.ajol.info/index.php/ajtcam/article/view/92333

48. Yang H, Wang Z, Song W, Zhao Z, Zhao Y. Isolation of proanthocyanidins from Pinus thunbergii needles and tyrosinase inhibition activity. Process Biochem. 2021; 100:245‑251. https://doi.org/10.1016/j.procbio.2020.10.003

49. Sánchez-Ferrer Á, Rodríguez-López JN, García-Cánovas F, García-Carmona F. Tyrosinase: a comprehensive review of its mechanism. Biochim Biophys Acta Enzymol. 1995; 1247(1):1‑11. https://doi.org/10.1016/0167-4838(94)00204-T

50. Zhang Z, Huber DJ, Qu H, Yun ZE, Wang H, Huang Z, Huang H, Jiang Y. Enzymatic browning and antioxidant activities in harvested litchi fruit as influenced by apple polyphenols. Food Chem. 2015; 171:191‑199. https://doi.org/10.1016/j.foodchem.2014.09.001

51. Lin M, Ke LN, Han P, Qiu L, Chen QX, Lin HT, Wang Q. Inhibitory effects of p-alkylbenzoic acids on the activity of polyphenol oxidase from potato (Solanum tuberosum). Food Chem. 2010; 119(2):660‑663. https://doi.org/10.1016/j.foodchem.2009.07.013

52. Jung HJ, Kim HJ, Park HS, Kim GY, Park YJ, Lee J, Kyung Kang M, Yoon D, Kang D, Park Y, Chun P, Young Chung H, Ryong Moon H.. Highly potent anti-melanogenic effect of 2-thiobenzothiazole derivatives through nanomolar tyrosinase activity inhibition. Bioinorg Chem. 2024; 150:107586. https://doi.org/10.1016/j.bioorg.2024.107586

53. Roy A, Sahu RK, Matlam M, Deshmukh VK, Dwivedi J, Jha AK. In vitro techniques to assess the proficiency of skin care cosmetic formulations. Pharmacogn Rev. 2013; 7(14):97. https://www.phcogrev.com/article/2013/7/14/1041030973-7847120507

54. Korać RR, Khambholja KM. Potential of herbs in skin protection from ultraviolet radiation. Pharmacogn Rev. 2011; 5(10):164. https://www.phcogrev.com/article/2011/5/10/1041030973-784791114

55. Ngoc LTN, Tran VV, Moon JY, Chae M, Park D, Lee YC. Recent trends of sunscreen cosmetic: An update review. Cosmetics. 2019; 6(4):64. https://www.mdpi.com/2079-9284/6/4/64